Spaces:
Sleeping
Sleeping
import os | |
import requests | |
from bs4 import BeautifulSoup | |
from urllib.parse import urljoin | |
import pandas as pd | |
import numpy as np | |
import zipfile | |
import textract | |
import gradio as gr | |
import shutil | |
def browse_folder(url): | |
if url.lower().endswith(('docs', 'docs/')): | |
return gr.update(choices=[]) | |
response = requests.get(url) | |
response.raise_for_status() # This will raise an exception if there's an error | |
soup = BeautifulSoup(response.text, 'html.parser') | |
excel_links = [a['href'] + '/' for a in soup.find_all('a', href=True) if a['href'].startswith(url)] | |
return gr.update(choices=excel_links) | |
def extract_statuses(url): | |
# Send a GET request to the webpage | |
response = requests.get(url) | |
# Parse the webpage content | |
soup = BeautifulSoup(response.content, 'html.parser') | |
# Find all links in the webpage | |
links = soup.find_all('a') | |
# Identify and download the Excel file | |
for link in links: | |
href = link.get('href') | |
if href and (href.endswith('.xls') or href.endswith('.xlsx')): | |
excel_url = href if href.startswith('http') else url + href | |
excel_response = requests.get(excel_url) | |
file_name = 'guide_status.xlsx' #excel_url.split('/')[-1] | |
# Save the file | |
with open(file_name, 'wb') as f: | |
f.write(excel_response.content) | |
# Read the Excel file | |
df = pd.read_excel(file_name) | |
# Check if 'TDoc Status' column exists and extract unique statuses | |
if 'TDoc Status' in df.columns: | |
unique_statuses = df['TDoc Status'].unique().tolist() | |
print(f'Downloaded {file_name} and extracted statuses: {unique_statuses}') | |
if 'withdrawn' in unique_statuses: | |
unique_statuses.remove('withdrawn') | |
return gr.update(choices=unique_statuses, value=unique_statuses) | |
else: | |
print(f"'TDoc Status' column not found in {file_name}") | |
return [] | |
def scrape(url, excel_file, folder_name, status_list, progress=gr.Progress()): | |
filenames = [] | |
status_filenames = [] | |
# Check if the excel_file argument is provided and if the file exists. | |
excel_file_path = "guide_status.xlsx" # Hardcoded path to the Excel file | |
if os.path.exists(excel_file_path): | |
try: | |
df = pd.read_excel(excel_file_path) | |
print(f"Initial DataFrame size: {len(df)}") | |
if 'TDoc Status' in df.columns: | |
df = df[df['TDoc Status'].isin(status_list)] | |
print(f"Filtered DataFrame size: {len(df)}") | |
if df.empty: | |
print("No files match the specified 'TDoc Status'.") | |
else: | |
if 'TDoc' in df.columns and not df['TDoc'].isnull().all(): | |
status_filenames = [f"{url}{row['TDoc']}.zip" for index, row in df.iterrows()] | |
elif 'URL' in df.columns and not df['URL'].isnull().all(): | |
status_filenames = df['URL'].tolist() | |
else: | |
print("No valid 'File' or 'URL' entries found for the filtered statuses.") | |
print(f"Filenames: {status_filenames}") | |
else: | |
print("'TDoc Status' column not found in the Excel file.") | |
except Exception as e: | |
print(f"Error reading Excel file: {e}") | |
if excel_file and os.path.exists(excel_file): | |
try: | |
df = pd.read_excel(excel_file) | |
# If 'Actions' in df.columns and filter based on it, and construct URLs from 'TDoc' or 'URL' columns | |
if 'Actions' in df.columns: | |
df = df[df['Actions'] == 'x'] | |
elif 'File' in df.columns: | |
filenames = [f"{url}{row['File']}.zip" for index, row in df.iterrows()] | |
elif 'URL' in df.columns: | |
filenames = df['URL'].tolist() | |
except Exception as e: | |
print(f"Error reading Excel file: {e}") | |
# Optionally, handle the error or return a message if needed | |
# If no Excel file is provided or found, or if it lacks 'TDoc'/'URL', the function can still continue with predefined URLs or other logic | |
download_directory = folder_name | |
if not os.path.exists(download_directory): | |
os.makedirs(download_directory) | |
pourcentss = 0.05 | |
print(f'filenames: {status_filenames}') | |
if not filenames and not status_filenames: | |
print("No Excel file provided, or no valid URLs found in the file.") | |
# You can either return here or continue with other predefined logic | |
response = requests.get(url) | |
# Analyser le contenu HTML de la page | |
soup = BeautifulSoup(response.content, "html.parser") | |
# Trouver tous les balises <a> avec des attributs href (liens) | |
links = soup.find_all("a", href=True) | |
# Filtrer les liens se terminant par ".zip" | |
zip_links = [link['href'] for link in links if link['href'].endswith('.zip')] | |
# Télécharger chaque fichier zip | |
for zip_link in zip_links: | |
progress(pourcentss,desc='Downloading') | |
pourcentss+=0.4/len(df) | |
# Construire l'URL absolue du fichier zip | |
absolute_url = urljoin(url, zip_link) | |
# Extraire le nom de fichier de l'URL | |
filename = os.path.basename(absolute_url) | |
# Chemin où le fichier sera enregistré | |
save_path = os.path.join(download_directory, filename) | |
# Envoyer une requête GET pour télécharger le fichier | |
with requests.get(absolute_url, stream=True) as r: | |
r.raise_for_status() | |
with open(save_path, 'wb') as f: | |
for chunk in r.iter_content(chunk_size=8192): | |
f.write(chunk) | |
elif not filenames: | |
# Proceed with downloading files using the filenames list | |
for file_url in status_filenames: | |
filename = os.path.basename(file_url) | |
save_path = os.path.join(download_directory, filename) | |
progress(pourcentss,desc='Downloading') | |
pourcentss+=0.4/len(df) | |
try: | |
with requests.get(file_url, stream=True) as r: | |
r.raise_for_status() | |
with open(save_path, 'wb') as f: | |
for chunk in r.iter_content(chunk_size=8192): | |
f.write(chunk) | |
except requests.exceptions.HTTPError as e: | |
print(f"skipped file: {file_url}: {e}") | |
else: | |
# Proceed with downloading files using the filenames list | |
for file_url in filenames: | |
filename = os.path.basename(file_url) | |
save_path = os.path.join(download_directory, filename) | |
try: | |
with requests.get(file_url, stream=True) as r: | |
r.raise_for_status() | |
with open(save_path, 'wb') as f: | |
for chunk in r.iter_content(chunk_size=8192): | |
f.write(chunk) | |
except requests.exceptions.HTTPError as e: | |
print(f"HTTP error occurred: {file_url}: {e}") | |
return False, "Il n'y a pas de colonne action ou alors celle ci n'est pas bien écrite, format attendu: 'Actions'" | |
return True, len(df) | |
def extractZip(url): | |
# Répertoire où les fichiers zip sont déjà téléchargés | |
nom_extract = url.split("/")[-3] + "_extraction" | |
if os.path.exists(nom_extract): | |
shutil.rmtree(nom_extract) | |
extract_directory = nom_extract | |
download_directory = url.split("/")[-3] + "_downloads" | |
# Répertoire où le contenu des fichiers zip sera extrait | |
# Extraire le contenu de tous les fichiers zip dans le répertoire de téléchargement | |
for zip_file in os.listdir(download_directory): | |
zip_path = os.path.join(download_directory, zip_file) | |
# Vérifier si le fichier est un fichier zip | |
if zip_file.endswith(".zip"): | |
extract_dir = os.path.join(extract_directory, os.path.splitext(zip_file)[0]) # Supprimer l'extension .zip | |
# Vérifier si le fichier zip existe | |
if os.path.exists(zip_path): | |
# Créer un répertoire pour extraire le contenu s'il n'existe pas | |
if not os.path.exists(extract_dir): | |
os.makedirs(extract_dir) | |
# Extraire le contenu du fichier zip | |
with zipfile.ZipFile(zip_path, 'r') as zip_ref: | |
zip_ref.extractall(extract_dir) | |
print(f"Extraction terminée pour {zip_file}") | |
else: | |
print(f"Fichier zip {zip_file} introuvable") | |
print("Toutes les extractions sont terminées !") | |
def excel3gpp(url): | |
response = requests.get(url) | |
response.raise_for_status() # This will raise an exception if there's an error | |
# Use BeautifulSoup to parse the HTML content | |
soup = BeautifulSoup(response.text, 'html.parser') | |
# Look for Excel file links; assuming they have .xlsx or .xls extensions | |
excel_links = [a['href'] for a in soup.find_all('a', href=True) if a['href'].endswith(('.xlsx', '.xls'))] | |
# Download the first Excel file found (if any) | |
if excel_links: | |
excel_url = excel_links[0] # Assuming you want the first Excel file | |
if not excel_url.startswith('http'): | |
excel_url = os.path.join(url, excel_url) # Handle relative URLs | |
# Download the Excel file | |
excel_response = requests.get(excel_url) | |
excel_response.raise_for_status() | |
# Define the path where you want to save the file | |
# Replace 'path_to_save_directory' with your desired path | |
# Write the content of the Excel file to a local file | |
# Write the content of the Excel file to a local file named 'guide.xlsx' | |
nom_guide = 'guide.xlsx' # Directly specify the filename | |
if os.path.exists(nom_guide): | |
os.remove(nom_guide) | |
filepath = nom_guide | |
with open(filepath, 'wb') as f: | |
f.write(excel_response.content) | |
print(f'Excel file downloaded and saved as: {filepath}') | |
def replace_line_breaks(text): | |
return text.replace("\n", "/n") | |
def remod_text(text): | |
return text.replace("/n", "\n") | |
def update_excel(data, excel_file, url): | |
new_df_columns = ["URL", "File", "Type", "Title", "Source", "Status", "Content"] | |
temp_df = pd.DataFrame(data, columns=new_df_columns) | |
try: | |
# Check if the Excel file already exists and append data to it | |
if os.path.exists(excel_file): | |
old_df = pd.read_excel(excel_file) | |
df = pd.concat([old_df, temp_df], axis=0, ignore_index=True) | |
else: | |
df = temp_df | |
# Save the updated data back to the Excel file | |
df.to_excel(excel_file, index=False) | |
except Exception as e: | |
print(f"Error updating Excel file: {e}") | |
def extractionPrincipale(url, excel_file=None, status_list=None, progress=gr.Progress()): | |
nom_download = url.split("/")[-3] + "_downloads" | |
if os.path.exists(nom_download): | |
shutil.rmtree(nom_download) | |
folder_name = nom_download | |
nom_status = url.split("/")[-3] + "_status.xlsx" | |
if os.path.exists(nom_status): | |
os.remove(nom_status) | |
temp_excel = nom_status | |
progress(0.0,desc='Downloading') | |
result, count = scrape(url, excel_file, folder_name, status_list) | |
if result: | |
print("Success") | |
else: | |
return(None) | |
progress(0.4,desc='Extraction') | |
extractZip(url) | |
progress(0.5,desc='Extraction 2') | |
excel3gpp(url) | |
progress(0.6,desc='Creating Excel File') | |
extract_directory = url.split("/")[-3] + "_extraction" | |
categories = { | |
"Other": ["URL", "File", "Type", "Title", "Source", "Content"], | |
"CR": ["URL", "File", "Type", "Title", "Source", "Content"], | |
"pCR":["URL", "File", "Type", "Title", "Source", "Content"], | |
"LS": ["URL", "File", "Type", "Title", "Source", "Content"], | |
"WID": ["URL", "File", "Type", "Title", "Source", "Content"], | |
"SID": ["URL", "File", "Type", "Title", "Source", "Content"], | |
"DISCUSSION": ["URL", "File", "Type", "Title", "Source", "Content"], | |
"pdf": ["URL", "File", "Type", "Title", "Source", "Content"], | |
"ppt": ["URL", "File", "Type", "Title", "Source", "Content"], | |
"pptx": ["URL", "File", "Type", "Title", "Source", "Content"] | |
} | |
pourcents2=0.6 | |
data = [] | |
errors_count = 0 | |
processed_count = 0 # Counter for processed files | |
pre_title_section = None | |
try: | |
df = pd.read_excel(temp_excel) | |
except Exception as e: | |
print(f"Initializing a new DataFrame because: {e}") | |
df = pd.DataFrame(columns=["URL", "File", "Type", "Title", "Source", "Status", "Content"]) | |
for folder in os.listdir(extract_directory): | |
folder_path = os.path.join(extract_directory, folder) | |
if os.path.isdir(folder_path): | |
for file in os.listdir(folder_path): | |
progress(min(pourcents2,0.99),desc='Creating Excel File') | |
pourcents2+=0.4/count | |
if file == "__MACOSX": | |
continue | |
file_path = os.path.join(folder_path, file) | |
if file.endswith((".pptx", ".ppt", ".pdf", ".docx", ".doc", ".DOCX")): | |
try: | |
text = textract.process(file_path).decode('utf-8') | |
except Exception as e: | |
print(f"Error processing {file_path}: {e}") | |
errors_count += 1 | |
continue | |
cleaned_text_lines = text.split('\n') | |
cleaned_text = '\n'.join([line.strip('|').strip() for line in cleaned_text_lines if line.strip()]) | |
title = "" | |
debut = "" | |
sections = cleaned_text.split("Title:") | |
if len(sections) > 1: | |
pre_title_section = sections[0].strip().split() | |
title = sections[1].strip().split("\n")[0].strip() | |
debut = sections[0].strip() | |
category = "Other" | |
if file.endswith(".pdf"): | |
category = "pdf" | |
elif file.endswith((".ppt", ".pptx")): | |
category = "ppt" # assuming all ppt and pptx files go into the same category | |
elif "CHANGE REQUEST" in debut: | |
category = "CR" | |
elif "Discussion" in title: | |
category = "DISCUSSION" | |
elif "WID" in title: | |
category = "WID" | |
elif "SID" in title: | |
category = "SID" | |
elif "LS" in title: | |
category = "LS" | |
elif pre_title_section and pre_title_section[-1] == 'pCR': | |
category = "pCR" | |
elif "Pseudo-CR" in title: | |
category = "pCR" | |
contenu = "" # This will hold the concatenated content for 'Contenu' column | |
if category in categories: | |
columns = categories[category] | |
extracted_content = [] | |
if category == "CR": | |
reason_for_change = "" | |
summary_of_change = "" | |
if len(sections) > 1: | |
reason_for_change = sections[1].split("Reason for change", 1)[-1].split("Summary of change")[0].strip() | |
summary_of_change = sections[1].split("Summary of change", 1)[-1].split("Consequences if not")[0].strip() | |
extracted_content.append(f"Reason for change: {reason_for_change}") | |
extracted_content.append(f"Summary of change: {summary_of_change}") | |
elif category == "pCR": | |
if len(sections) > 1:# Handle 'pCR' category-specific content extraction | |
pcr_specific_content = sections[1].split("Introduction", 1)[-1].split("First Change")[0].strip() | |
extracted_content.append(f"Introduction: {pcr_specific_content}") | |
elif category == "LS": | |
overall_review = "" | |
if len(sections) > 1: | |
overall_review = sections[1].split("Overall description", 1)[-1].strip() | |
extracted_content.append(f"Overall review: {overall_review}") | |
elif category in ["WID", "SID"]: | |
objective = "" | |
start_index = cleaned_text.find("Objective") | |
end_index = cleaned_text.find("Expected Output and Time scale") | |
if start_index != -1 and end_index != -1: | |
objective = cleaned_text[start_index + len("Objective"):end_index].strip() | |
extracted_content.append(f"Objective: {objective}") | |
elif category == "DISCUSSION": | |
Discussion = "" | |
extracted_text = replace_line_breaks(cleaned_text) | |
start_index_doc_for = extracted_text.find("Document for:") | |
if start_index_doc_for != -1: | |
start_index_word_after_doc_for = start_index_doc_for + len("Document for:") | |
end_index_word_after_doc_for = start_index_word_after_doc_for + extracted_text[start_index_word_after_doc_for:].find("/n") | |
word_after_doc_for = extracted_text[start_index_word_after_doc_for:end_index_word_after_doc_for].strip() | |
result_intro = '' | |
result_conclusion = '' | |
result_info = '' | |
if word_after_doc_for.lower() == "discussion": | |
start_index_intro = extracted_text.find("Introduction") | |
end_index_intro = extracted_text.find("Discussion", start_index_intro) | |
intro_text = "" | |
if start_index_intro != -1 and end_index_intro != -1: | |
intro_text = extracted_text[start_index_intro + len("Introduction"):end_index_intro].strip() | |
result_intro = remod_text(intro_text) # Convert back line breaks | |
else: | |
result_intro = "Introduction section not found." | |
# Attempt to find "Conclusion" | |
start_index_conclusion = extracted_text.find("Conclusion", end_index_intro) | |
end_index_conclusion = extracted_text.find("Proposal", start_index_conclusion if start_index_conclusion != -1 else end_index_intro) | |
conclusion_text = "" | |
if start_index_conclusion != -1 and end_index_conclusion != -1: | |
conclusion_text = extracted_text[start_index_conclusion + len("Conclusion"):end_index_conclusion].strip() | |
result_conclusion = remod_text(conclusion_text) | |
elif start_index_conclusion == -1: # Conclusion not found, look for Proposal directly | |
start_index_proposal = extracted_text.find("Proposal", end_index_intro) | |
if start_index_proposal != -1: | |
end_index_proposal = len(extracted_text) # Assuming "Proposal" section goes till the end if present | |
proposal_text = extracted_text[start_index_proposal + len("Proposal"):end_index_proposal].strip() | |
result_conclusion = remod_text(proposal_text) # Using "Proposal" content as "Conclusion" | |
else: | |
result_conclusion = "Conclusion/Proposal section not found." | |
else: | |
# Handle case where "Conclusion" exists but no "Proposal" to mark its end | |
conclusion_text = extracted_text[start_index_conclusion + len("Conclusion"):].strip() | |
result_conclusion = remod_text(conclusion_text) | |
Discussion=f"Introduction: {result_intro}\nConclusion/Proposal: {result_conclusion}" | |
elif word_after_doc_for.lower() == "information": | |
start_index_info = extracted_text.find(word_after_doc_for) | |
if start_index_info != -1: | |
info_to_end = extracted_text[start_index_info + len("Information"):].strip() | |
result_info = remod_text(info_to_end) | |
Discussion = f"Discussion:{result_info}" | |
else: | |
Discussion = "The word after 'Document for:' is not 'Discussion', 'DISCUSSION', 'Information', or 'INFORMATION'." | |
else: | |
Discussion = "The phrase 'Document for:' was not found." | |
# Since DISCUSSION category handling requires more specific processing, adapt as necessary | |
# Here's a simplified example | |
discussion_details = Discussion | |
extracted_content.append(discussion_details) | |
# Add more categories as needed | |
contenu = "\n".join(extracted_content) | |
# Assuming 'source' needs to be filled from the guide.xlsx mapping | |
# Placeholder for source value calculation | |
source = "" # Update this with actual source determination logic | |
status = "" | |
data.append([url+ "/" + folder + '.zip', folder , category, title, source,status, contenu]) | |
# After processing all files and directories | |
# Read the guide.xlsx file into a DataFrame to map 'TDoc' to 'Source' | |
guide_df = pd.read_excel('guide.xlsx', usecols=['Source', 'TDoc','TDoc Status']) | |
tdoc_source_map = {row['TDoc']: row['Source'] for index, row in guide_df.iterrows()} | |
tdoc_status_map = {row['TDoc']: row['TDoc Status'] for index, row in guide_df.iterrows()} | |
# Update the 'Source' in your data based on matching 'Nom du fichier' with 'TDoc' | |
for item in data: | |
nom_du_fichier = item[1] # Assuming 'Nom du fichier' is the first item in your data list | |
if nom_du_fichier in tdoc_source_map: | |
item[4] = tdoc_source_map[nom_du_fichier] # Update the 'Source' field, assuming it's the fourth item | |
item[5] = tdoc_status_map[nom_du_fichier] | |
processed_count += 1 | |
# Check if it's time to update the Excel file | |
if processed_count % 20 == 0: | |
update_excel(data, temp_excel, url) | |
print(f"Updated after processing {processed_count} files.") | |
data = [] # Clear the data list after updating | |
if data: | |
# This final call ensures that any remaining data is processed and saved. | |
update_excel(data, temp_excel, url) | |
print(f"Final update after processing all files.") | |
file_name = temp_excel | |
# Save the updated DataFrame to Excel | |
return file_name | |