YchKhan's picture
Update app.py
7cc65b4 verified
raw
history blame
9 kB
import gradio as gr
from scrape_3gpp import *
from excel_chat import *
from classification import *
from chart_generation import *
from charts_advanced import *
from users_management import *
# Categories
categories = [
{
"topic": "Confidentiality and Privacy Protection",
"description": "This topic covers the protection of confidentiality, privacy, and integrity in security systems. It also includes authentication and authorization processes.",
"experts": ["Mireille"]
},
{
"topic": "Distributed Trust and End-User Trust Models",
"description": "This topic focuses on distributed trust models and how end-users establish trust in secure systems.",
"experts": ["Mireille", "Khawla"]
},
{
"topic": "Secure Element and Key Provisioning",
"description": "This topic involves the secure element in systems and the process of key provisioning.",
"experts": ["Mireille"]
},
{
"topic": "Residential Gateway Security",
"description": "This topic covers the security aspects of Residential Gateways.",
"experts": ["Mireille"]
},
{
"topic": "Standalone Non-Public Network (SNPN) Inter-Connection and Cybersecurity",
"description": "This topic focuses on the inter-connection of Standalone Non-Public Networks and related cyber-security topics.",
"experts": ["Khawla"]
},
{
"topic": "Distributed Ledger and Blockchain in SNPN",
"description": "This topic covers the use of distributed ledger technology and blockchain in securing Standalone Non-Public Networks.",
"experts": ["Khawla"]
},
{
"topic": "Distributed Networks and Communication",
"description": "This topic involves distributed networks such as mesh networks, ad-hoc networks, and multi-hop networks, and their cyber-security aspects.",
"experts": ["Guillaume"]
},
{
"topic": "Swarm of Drones and Unmanned Aerial Vehicles Network Infrastructure",
"description": "This topic covers the network infrastructure deployed by Swarm of Drones and Unmanned Aerial Vehicles.",
"experts": ["Guillaume"]
},
{
"topic": "USIM and Over-the-Air Services",
"description": "This topic involves USIM and related over-the-air services such as Steering of Roaming, roaming services, network selection, and UE configuration.",
"experts": ["Vincent"]
},
{
"topic": "Eco-Design and Societal Impact of Technology",
"description": "This topic covers eco-design concepts, including energy saving, energy efficiency, carbon emissions, and the societal impact of technology.",
"experts": ["Pierre"]
},
{
"topic": "Service Requirements of New Services",
"description": "This topic involves defining service requirements for new services, detecting low signals of new trends and technologies, and assessing their impact on USIM services or over-the-air services.",
"experts": ["Ly-Thanh"]
},
{
"topic": "Satellite and Non Terrestrial Networks",
"description": "This topic covers satellite networks, Non Terrestrial Networks, Private Networks, IoT, Inter Satellite communication, and Radio Access Network.",
"experts": ["Nicolas"]
},
{
"topic": "Public Safety and Emergency Communication",
"description": "This topic involves Public Safety Communication, Military Communication, Emergency Calls, Emergency Services, Disaster Communication Access, and other related areas.",
"experts": ["Dorin"]
}
]
df_cate = pd.DataFrame(categories)
# def update_label(label1):
# return gr.update(choices=list(df.columns))
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown("## Extaction, Classification and AI tool")
with gr.Column():
md_username = gr.Markdown()
btn_logout = gr.Button("Logout")
with gr.Accordion(label="**Login** to keep user preferences", open=False):
st_user = gr.State()
with gr.Column():
tb_user = gr.Textbox(label='Username')
tb_pwd = gr.Textbox(label='Password', type='password')
with gr.Row():
btn_login = gr.Button('Login')
with gr.Tab("File extraction"):
gr.Markdown(" Put either just a link, or a link and an excel file with an 'Actions' column")
with gr.Row():
dd_url = gr.Dropdown(label="(e.g. https://www.3gpp.org/ftp/TSG_SA/WG1_Serv/TSGS1_105_Athens/Docs)", multiselect=False, value="https://www.3gpp.org/ftp/", allow_custom_value=True, scale=9)
btn_search = gr.Button("Search")
with gr.Accordion("Filter by file status", open=False):
with gr.Row():
dd_status = gr.Dropdown(label="Status to look for (Optional)", allow_custom_value=False, multiselect=True, scale=7)
btn_search_status = gr.Button("Search for status", scale=2)
btn_extract = gr.Button("Extract excel from URL")
with gr.Tab("Ask LLM"):
dd_source_ask = gr.Dropdown(label="Source Column(s)", multiselect=True)
tb_destcol = gr.Textbox(label="Destination column label (e.g. Summary, ELI5, PAB)")
dd_prompt = gr.Dropdown(label="Prompt", allow_custom_value=True, multiselect=True, max_choices=1)
dd_llm = gr.Dropdown(["Mistral Tiny","Mistral Small","Mistral Medium", "Claude Sonnet", "Claude Opus", "Groq (mixtral)"],value="Groq (mixtral)", label="Choose your LLM")
with gr.Accordion("Filters", open=False):
with gr.Row():
dd_searchcol = gr.Dropdown(label="Column to look into (Optional)", multiselect=False, scale=4)
dd_keywords = gr.Dropdown(label="Words to look for (Optional)", multiselect=True, allow_custom_value=True, scale=5)
mist_button = gr.Button("Ask AI")
with gr.Tab("Classification by topic"):
dd_source_class = gr.Dropdown(label="Source Column", multiselect=False)
gr.Markdown("### The predefined categories can be modified at any time")
df_category = gr.DataFrame(label='categories', value=df_cate, interactive=True)
btn_classif = gr.Button("Categorize")
with gr.Tab(" Personalised Charts Generation"):
with gr.Row():
dd_label1 = gr.Dropdown(label="Label 1", multiselect=False)
dd_label2 = gr.Dropdown(label="Label 2", value="", multiselect=False)
btn_chart = gr.Button("Generate Bar Plot")
plt_figure = gr.Plot()
with gr.Tab("Meeting Report (charts)"):
#gr.Markdown("## 🚧 Actuellement en maintenance 🚧")
with gr.Tab("Overall"):
btn_overall = gr.Button("Overall Review")
with gr.Tab("By Expert"):
dd_exp=gr.Dropdown(label="Experts", multiselect=False, allow_custom_value=True,)
btn_expert = gr.Button("Top 10 by expert")
with gr.Tab("By Company"):
tb_com=gr.Textbox(label="Company Name",info="You can write 1, 2 or 3 company names at the same time")
btn_type = gr.Button("Company info")
with gr.Row():
plt_chart = gr.Plot(label="Graphique")
plt_chart2 = gr.Plot(label="Graphique")
plt_chart3 = gr.Plot(label="Graphique")
with gr.Accordion("Excel Preview", open=False):
df_output = gr.DataFrame()
fi_excel = gr.File(label="Excel File")
# authentication
btn_login.click(auth_user, inputs=[tb_user, tb_pwd], outputs=[st_user, md_username, dd_prompt, dd_keywords])
tb_pwd.submit(auth_user, inputs=[tb_user, tb_pwd], outputs=[st_user, md_username, dd_prompt, dd_keywords])
btn_logout.click(logout, inputs=None, outputs=[st_user, md_username, dd_prompt, dd_keywords])
btn_search_status.click(extract_statuses, inputs=dd_url, outputs=dd_status)
btn_search.click(browse_folder, inputs=dd_url, outputs=dd_url)
dd_url.change(browse_folder, inputs=dd_url, outputs=dd_url)
#fi_excel.change(get_expert,inputs=fi_excel, outputs=dd_exp)
fi_excel.change(get_columns, inputs=[fi_excel], outputs=[dd_source_ask, dd_source_class, dd_label1, dd_label2, dd_searchcol, df_output])
btn_extract.click(extractionPrincipale, inputs=[dd_url, fi_excel, dd_status], outputs=[fi_excel])
mist_button.click(chat_with_mistral, inputs=[dd_source_ask, tb_destcol, dd_prompt, fi_excel, dd_url, dd_searchcol, dd_keywords, dd_llm, st_user], outputs=[fi_excel, df_output, dd_prompt, dd_keywords, st_user])
btn_classif.click(classification, inputs=[dd_source_class, fi_excel, df_category], outputs=[fi_excel, df_output])
btn_chart.click(create_bar_plot, inputs=[fi_excel, dd_label1, dd_label2], outputs=[plt_figure])
btn_overall.click(generate_company_chart,inputs=[fi_excel], outputs=[plt_chart])
btn_overall.click(status_chart,inputs=[fi_excel], outputs=[plt_chart2])
btn_overall.click(category_chart,inputs=[fi_excel], outputs=[plt_chart3])
btn_expert.click(chart_by_expert,inputs=[fi_excel,dd_exp], outputs=[plt_chart])
btn_type.click(company_document_type,inputs=[fi_excel,tb_com], outputs=[plt_chart])
# dd_label1.change(update_label, inputs=[dd_label1], outputs=[dd_label2])
demo.launch(debug=True)