Create split_files_to_excel.py
Browse files- split_files_to_excel.py +474 -0
split_files_to_excel.py
ADDED
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import io
|
3 |
+
import os
|
4 |
+
import logging
|
5 |
+
import collections
|
6 |
+
import tempfile
|
7 |
+
from langchain.document_loaders import UnstructuredFileLoader
|
8 |
+
from langchain.text_splitter import CharacterTextSplitter
|
9 |
+
from langchain.vectorstores import FAISS
|
10 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
+
|
12 |
+
from langchain.document_loaders import PDFMinerPDFasHTMLLoader
|
13 |
+
from bs4 import BeautifulSoup
|
14 |
+
import re
|
15 |
+
from langchain.docstore.document import Document
|
16 |
+
|
17 |
+
import unstructured
|
18 |
+
from unstructured.partition.docx import partition_docx
|
19 |
+
from unstructured.partition.auto import partition
|
20 |
+
|
21 |
+
from transformers import AutoTokenizer
|
22 |
+
|
23 |
+
MODEL = "thenlper/gte-base"
|
24 |
+
CHUNK_SIZE = 1000
|
25 |
+
CHUNK_OVERLAP = 200
|
26 |
+
|
27 |
+
embeddings = HuggingFaceEmbeddings(
|
28 |
+
model_name=MODEL,
|
29 |
+
cache_folder=os.getenv("SENTENCE_TRANSFORMERS_HOME")
|
30 |
+
)
|
31 |
+
|
32 |
+
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
35 |
+
model_id,
|
36 |
+
padding_side="left"
|
37 |
+
)
|
38 |
+
|
39 |
+
text_splitter = CharacterTextSplitter(
|
40 |
+
separator = "\n",
|
41 |
+
chunk_size = CHUNK_SIZE,
|
42 |
+
chunk_overlap = CHUNK_OVERLAP,
|
43 |
+
length_function = len,
|
44 |
+
)
|
45 |
+
|
46 |
+
## PDF Functions
|
47 |
+
|
48 |
+
def group_text_by_font_size(content):
|
49 |
+
cur_fs = []
|
50 |
+
cur_text = ''
|
51 |
+
cur_page = -1
|
52 |
+
cur_c = content[0]
|
53 |
+
multi_fs = False
|
54 |
+
snippets = [] # first collect all snippets that have the same font size
|
55 |
+
for c in content:
|
56 |
+
# print(f"c={c}\n\n")
|
57 |
+
if c.find('a') != None and c.find('a').get('name'):
|
58 |
+
cur_page = int(c.find('a').get('name'))
|
59 |
+
sp_list = c.find_all('span')
|
60 |
+
if not sp_list:
|
61 |
+
continue
|
62 |
+
for sp in sp_list:
|
63 |
+
# print(f"sp={sp}\n\n")
|
64 |
+
if not sp:
|
65 |
+
continue
|
66 |
+
st = sp.get('style')
|
67 |
+
if not st:
|
68 |
+
continue
|
69 |
+
fs = re.findall('font-size:(\d+)px',st)
|
70 |
+
# print(f"fs={fs}\n\n")
|
71 |
+
if not fs:
|
72 |
+
continue
|
73 |
+
fs = [int(fs[0])]
|
74 |
+
if len(cur_fs)==0:
|
75 |
+
cur_fs = fs
|
76 |
+
if fs == cur_fs:
|
77 |
+
cur_text += sp.text
|
78 |
+
elif not sp.find('br') and cur_c==c:
|
79 |
+
cur_text += sp.text
|
80 |
+
cur_fs.extend(fs)
|
81 |
+
multi_fs = True
|
82 |
+
elif sp.find('br') and multi_fs == True: # if a br tag is found and the text is in a different fs, it is the last part of the multifontsize line
|
83 |
+
cur_fs.extend(fs)
|
84 |
+
snippets.append((cur_text+sp.text,max(cur_fs), cur_page))
|
85 |
+
cur_fs = []
|
86 |
+
cur_text = ''
|
87 |
+
cur_c = c
|
88 |
+
multi_fs = False
|
89 |
+
else:
|
90 |
+
snippets.append((cur_text,max(cur_fs), cur_page))
|
91 |
+
cur_fs = fs
|
92 |
+
cur_text = sp.text
|
93 |
+
cur_c = c
|
94 |
+
multi_fs = False
|
95 |
+
snippets.append((cur_text,max(cur_fs), cur_page))
|
96 |
+
return snippets
|
97 |
+
|
98 |
+
def get_titles_fs(fs_list):
|
99 |
+
filtered_fs_list = [item[0] for item in fs_list if item[0] > fs_list[0][0]]
|
100 |
+
return sorted(filtered_fs_list, reverse=True)
|
101 |
+
|
102 |
+
def calculate_total_characters(snippets):
|
103 |
+
font_sizes = {} #dictionary to store font-size and total characters
|
104 |
+
|
105 |
+
for text, font_size, _ in snippets:
|
106 |
+
#remove newline# and digits
|
107 |
+
cleaned_text = text.replace('\n', '')
|
108 |
+
#cleaned_text = re.sub(r'\d+', '', cleaned_text)
|
109 |
+
total_characters = len(cleaned_text)
|
110 |
+
|
111 |
+
#update the dictionary
|
112 |
+
if font_size in font_sizes:
|
113 |
+
font_sizes[font_size] += total_characters
|
114 |
+
else:
|
115 |
+
font_sizes[font_size] = total_characters
|
116 |
+
#convert the dictionary into a sorted list of tuples
|
117 |
+
size_charac_list = sorted(font_sizes.items(), key=lambda x: x[1], reverse=True)
|
118 |
+
|
119 |
+
return size_charac_list
|
120 |
+
|
121 |
+
def create_documents(source, snippets, font_sizes):
|
122 |
+
docs = []
|
123 |
+
|
124 |
+
titles_fs = get_titles_fs(font_sizes)
|
125 |
+
|
126 |
+
for snippet in snippets:
|
127 |
+
cur_fs = snippet[1]
|
128 |
+
if cur_fs>font_sizes[0][0] and len(snippet[0])>2:
|
129 |
+
content = min((titles_fs.index(cur_fs)+1), 3)*"#" + " " + snippet[0].replace(" ", " ")
|
130 |
+
category = "Title"
|
131 |
+
else:
|
132 |
+
content = snippet[0].replace(" ", " ")
|
133 |
+
category = "Paragraph"
|
134 |
+
metadata={"source":source, "filename":source.split("/")[-1], "file_directory": "/".join(source.split("/")[:-1]), "file_category":"", "file_sub-cat":"", "file_sub2-cat":"", "category":category, "filetype":source.split(".")[-1], "page_number":snippet[2]}
|
135 |
+
categories = source.split("/")
|
136 |
+
cat_update=""
|
137 |
+
if len(categories)>4:
|
138 |
+
cat_update = {"file_category":categories[1], "file_sub-cat":categories[2], "file_sub2-cat":categories[3]}
|
139 |
+
elif len(categories)>3:
|
140 |
+
cat_update = {"file_category":categories[1], "file_sub-cat":categories[2]}
|
141 |
+
elif len(categories)>2:
|
142 |
+
cat_update = {"file_category":categories[1]}
|
143 |
+
metadata.update(cat_update)
|
144 |
+
docs.append(Document(page_content=content, metadata=metadata))
|
145 |
+
return docs
|
146 |
+
|
147 |
+
## Group Chunks docx or pdf
|
148 |
+
|
149 |
+
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
|
150 |
+
def group_chunks_by_section(chunks, min_chunk_size=512):
|
151 |
+
filtered_chunks = [chunk for chunk in chunks if chunk.metadata['category'] != 'PageBreak']# Add more filters if needed
|
152 |
+
#print(f"filtered = {len(filtered_chunks)} - before = {len(chunks)}")
|
153 |
+
new_chunks = []
|
154 |
+
seen_paragraph = False
|
155 |
+
new_title = True #switches when there is a new paragraph to create a new chunk
|
156 |
+
for i, chunk in enumerate(filtered_chunks):
|
157 |
+
# print(f"\n\n\n#{i}:METADATA: {chunk.metadata['category']}")
|
158 |
+
if new_title:
|
159 |
+
#print(f"<-- NEW title DETECTED -->")
|
160 |
+
new_chunk = chunk
|
161 |
+
new_title = False
|
162 |
+
add_content = False
|
163 |
+
new_chunk.metadata['titles'] = ""
|
164 |
+
#print(f"CONTENT: {new_chunk.page_content}\nMETADATA: {new_chunk.metadata['category']} \n title: {new_chunk.metadata['title']}")
|
165 |
+
|
166 |
+
if chunk.metadata['category'].lower() =='title':
|
167 |
+
new_chunk.metadata['titles'] += f"{chunk.page_content} ~~ "
|
168 |
+
else:
|
169 |
+
#Activates when a paragraph is seen after one or more titles
|
170 |
+
seen_paragraph = True
|
171 |
+
|
172 |
+
#Avoid adding the title 2 times to the page content
|
173 |
+
if add_content:#and chunk.page_content not in new_chunk.page_content
|
174 |
+
new_chunk.page_content += f"\n{chunk.page_content}"
|
175 |
+
#edit the end_page number, the last one keeps its place
|
176 |
+
try:
|
177 |
+
new_chunk.metadata['end_page'] = chunk.metadata['page_number']
|
178 |
+
except:
|
179 |
+
print("", end="")
|
180 |
+
#print("Exception: No page number in metadata")
|
181 |
+
|
182 |
+
add_content = True
|
183 |
+
|
184 |
+
#If filtered_chunks[i+1] raises an error, this is probably because this is the last chunk
|
185 |
+
try:
|
186 |
+
#If the next chunk is a title and we have already seen a paragraph and the current chunk content is long enough, we create a new document
|
187 |
+
if filtered_chunks[i+1].metadata['category'].lower() =="title" and seen_paragraph and len(new_chunk.page_content)>min_chunk_size:
|
188 |
+
if 'category' in new_chunk.metadata:
|
189 |
+
new_chunk.metadata.pop('category')
|
190 |
+
new_chunks.append(new_chunk)
|
191 |
+
new_title = True
|
192 |
+
seen_paragraph = False
|
193 |
+
#index out of range
|
194 |
+
except:
|
195 |
+
new_chunks.append(new_chunk)
|
196 |
+
#print('🆘 Gone through all chunks 🆘')
|
197 |
+
break
|
198 |
+
return new_chunks
|
199 |
+
|
200 |
+
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
|
201 |
+
## Split documents by font
|
202 |
+
|
203 |
+
def split_pdf(file_path, folder):
|
204 |
+
loader = PDFMinerPDFasHTMLLoader(file_path)
|
205 |
+
|
206 |
+
data = loader.load()[0] # entire pdf is loaded as a single Document
|
207 |
+
soup = BeautifulSoup(data.page_content,'html.parser')
|
208 |
+
content = soup.find_all('div')#List of all elements in div tags
|
209 |
+
try:
|
210 |
+
snippets = group_text_by_font_size(content)
|
211 |
+
except Exception as e:
|
212 |
+
print("ERROR WHILE GROUPING BY FONT SIZE", e)
|
213 |
+
snippets = [("ERROR WHILE GROUPING BY FONT SIZE", 0, -1)]
|
214 |
+
font_sizes = calculate_total_characters(snippets)#get the amount of characters for each font_size
|
215 |
+
chunks = create_documents(file_path, snippets, font_sizes)
|
216 |
+
return chunks
|
217 |
+
|
218 |
+
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
|
219 |
+
def split_docx(file_path, folder):
|
220 |
+
chunks_elms = partition_docx(filename=file_path)
|
221 |
+
chunks = []
|
222 |
+
file_categories = file_path.split("/")
|
223 |
+
for chunk_elm in chunks_elms:
|
224 |
+
category = chunk_elm.category
|
225 |
+
if category == "Title":
|
226 |
+
chunk = Document(page_content= min(chunk_elm.metadata.to_dict()['category_depth']+1, 3)*"#" + ' ' + chunk_elm.text, metadata=chunk_elm.metadata.to_dict())
|
227 |
+
else:
|
228 |
+
chunk = Document(page_content=chunk_elm.text, metadata=chunk_elm.metadata.to_dict())
|
229 |
+
metadata={"source":file_path, "filename":file_path.split("/")[-1], "file_category":"", "file_sub-cat":"", "file_sub2-cat":"", "category":category, "filetype":file_path.split(".")[-1]}
|
230 |
+
cat_update=""
|
231 |
+
if len(file_categories)>4:
|
232 |
+
cat_update = {"file_category":file_categories[1], "file_sub-cat":file_categories[2], "file_sub2-cat":file_categories[3]}
|
233 |
+
elif len(file_categories)>3:
|
234 |
+
cat_update = {"file_category":file_categories[1], "file_sub-cat":file_categories[2]}
|
235 |
+
elif len(file_categories)>2:
|
236 |
+
cat_update = {"file_category":file_categories[1]}
|
237 |
+
metadata.update(cat_update)
|
238 |
+
chunk.metadata.update(metadata)
|
239 |
+
chunks.append(chunk)
|
240 |
+
return chunks
|
241 |
+
|
242 |
+
# Load the index of documents (if it has already been built)
|
243 |
+
|
244 |
+
def rebuild_index(input_folder, output_folder):
|
245 |
+
paths_time = []
|
246 |
+
to_keep = set()
|
247 |
+
print(f'number of files {len(paths_time)}')
|
248 |
+
if len(output_folder.list_paths_in_partition()) > 0:
|
249 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
250 |
+
for f in output_folder.list_paths_in_partition():
|
251 |
+
with output_folder.get_download_stream(f) as stream:
|
252 |
+
with open(os.path.join(temp_dir, os.path.basename(f)), "wb") as f2:
|
253 |
+
f2.write(stream.read())
|
254 |
+
index = FAISS.load_local(temp_dir, embeddings)
|
255 |
+
to_remove = []
|
256 |
+
logging.info(f"{len(index.docstore._dict)} vectors loaded")
|
257 |
+
for idx, doc in index.docstore._dict.items():
|
258 |
+
source = (doc.metadata["source"], doc.metadata["last_modified"])
|
259 |
+
if source in paths_time:
|
260 |
+
# Identify documents already indexed and still present in the source folder
|
261 |
+
to_keep.add(source)
|
262 |
+
else:
|
263 |
+
# Identify documents removed from the source folder
|
264 |
+
to_remove.append(idx)
|
265 |
+
|
266 |
+
docstore_id_to_index = {v: k for k, v in index.index_to_docstore_id.items()}
|
267 |
+
|
268 |
+
# Remove documents that have been deleted from the source folder
|
269 |
+
vectors_to_remove = []
|
270 |
+
for idx in to_remove:
|
271 |
+
del index.docstore._dict[idx]
|
272 |
+
ind = docstore_id_to_index[idx]
|
273 |
+
del index.index_to_docstore_id[ind]
|
274 |
+
vectors_to_remove.append(ind)
|
275 |
+
index.index.remove_ids(np.array(vectors_to_remove, dtype=np.int64))
|
276 |
+
|
277 |
+
index.index_to_docstore_id = {
|
278 |
+
i: ind
|
279 |
+
for i, ind in enumerate(index.index_to_docstore_id.values())
|
280 |
+
}
|
281 |
+
logging.info(f"{len(to_remove)} vectors removed")
|
282 |
+
else:
|
283 |
+
index = None
|
284 |
+
to_add = [path[0] for path in paths_time if path not in to_keep]
|
285 |
+
print(f'to_keep: {to_keep}')
|
286 |
+
print(f'to_add: {to_add}')
|
287 |
+
return index, to_add
|
288 |
+
|
289 |
+
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
|
290 |
+
def split_chunks_by_tokens(documents, max_length=170, overlap=10):
|
291 |
+
# Create an empty list to store the resized documents
|
292 |
+
resized = []
|
293 |
+
|
294 |
+
# Iterate through the original documents list
|
295 |
+
for doc in documents:
|
296 |
+
encoded = tokenizer.encode(doc.page_content)
|
297 |
+
if len(encoded) > max_length:
|
298 |
+
remaining_encoded = tokenizer.encode(doc.page_content)
|
299 |
+
while len(remaining_encoded) > 0:
|
300 |
+
split_doc = Document(page_content=tokenizer.decode(remaining_encoded[:max(10, max_length)]), metadata=doc.metadata.copy())
|
301 |
+
resized.append(split_doc)
|
302 |
+
remaining_encoded = remaining_encoded[max(10, max_length - overlap):]
|
303 |
+
|
304 |
+
else:
|
305 |
+
resized.append(doc)
|
306 |
+
print(f"Number of chunks before resplitting: {len(documents)} \nAfter splitting: {len(resized)}")
|
307 |
+
return resized
|
308 |
+
|
309 |
+
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
|
310 |
+
def split_chunks_by_tokens_period(documents, max_length=170, overlap=10, min_chunk_size=20):
|
311 |
+
# Create an empty list to store the resized documents
|
312 |
+
resized = []
|
313 |
+
previous_file=""
|
314 |
+
# Iterate through the original documents list
|
315 |
+
for doc in documents:
|
316 |
+
current_file = doc.metadata['source']
|
317 |
+
if current_file != previous_file: #chunk counting
|
318 |
+
previous_file = current_file
|
319 |
+
chunk_counter = 0
|
320 |
+
is_first_chunk = True # Keep track of the first chunk in the document
|
321 |
+
encoded = tokenizer.encode(doc.page_content)#encode the current document
|
322 |
+
if len(encoded) > max_length:
|
323 |
+
remaining_encoded = encoded
|
324 |
+
is_last_chunk = False
|
325 |
+
while len(remaining_encoded) > 1 and not is_last_chunk:
|
326 |
+
# Check for a period in the first 'overlap' tokens
|
327 |
+
overlap_text = tokenizer.decode(remaining_encoded[:overlap])# Index by token
|
328 |
+
period_index_b = overlap_text.find('.')# Index by character
|
329 |
+
if len(remaining_encoded)>max_length + min_chunk_size:
|
330 |
+
current_encoded = remaining_encoded[:max(10, max_length)]
|
331 |
+
else:
|
332 |
+
current_encoded = remaining_encoded[:max(10, max_length + min_chunk_size)] #if the last chunk is to small, concatenate it with the previous one
|
333 |
+
is_last_chunk = True
|
334 |
+
period_index_e = len(doc.page_content) # an amount of character that I am sure will be greater or equal to the max lengh of a chunk, could have done len(tokenizer.decode(current_encoded))
|
335 |
+
if len(remaining_encoded)>max_length+min_chunk_size:# If it is not the last sub chunk
|
336 |
+
overlap_text_last = tokenizer.decode(current_encoded[-overlap:])
|
337 |
+
period_index_last = overlap_text_last.find('.')
|
338 |
+
if period_index_last != -1 and period_index_last < len(overlap_text_last) - 1:
|
339 |
+
#print(f"period index last found at {period_index_last}")
|
340 |
+
period_index_e = period_index_last - len(overlap_text_last) + 1
|
341 |
+
#print(f"period_index_e :{period_index_e}")
|
342 |
+
#print(f"last :{overlap_text_last}")
|
343 |
+
if not is_first_chunk:#starting after the period in overlap
|
344 |
+
if period_index_b == -1:# Period not found in overlap
|
345 |
+
#print(". not found in overlap")
|
346 |
+
split_doc = Document(page_content=tokenizer.decode(current_encoded)[:period_index_e], metadata=doc.metadata.copy()) # Keep regular splitting
|
347 |
+
else:
|
348 |
+
if is_last_chunk : #not the first but the last
|
349 |
+
split_doc = Document(page_content=tokenizer.decode(current_encoded)[period_index_b+1:], metadata=doc.metadata.copy())
|
350 |
+
#print("Should start after \".\"")
|
351 |
+
else:
|
352 |
+
split_doc = Document(page_content=tokenizer.decode(current_encoded)[period_index_b+1:period_index_e], metadata=doc.metadata.copy()) # Split at the begining and the end
|
353 |
+
else:#first chunk
|
354 |
+
split_doc = Document(page_content=tokenizer.decode(current_encoded)[:period_index_e], metadata=doc.metadata.copy()) # split only at the end if its first chunk
|
355 |
+
if 'titles' in split_doc.metadata:
|
356 |
+
chunk_counter += 1
|
357 |
+
split_doc.metadata['chunk_id'] = chunk_counter
|
358 |
+
#A1 We could round chunk length in token if we ignore the '.' position in the overlap and save time of computation
|
359 |
+
split_doc.metadata['token_length'] = len(tokenizer.encode(split_doc.page_content))
|
360 |
+
resized.append(split_doc)
|
361 |
+
remaining_encoded = remaining_encoded[max(10, max_length - overlap):]
|
362 |
+
is_first_chunk = False
|
363 |
+
#print(len(tokenizer.encode(split_doc.page_content)), split_doc.page_content, "\n-----------------")
|
364 |
+
elif len(encoded)>min_chunk_size:#ignore the chunks that are too small
|
365 |
+
#print(f"◀Document:{{ {doc.page_content} }} was not added because to short▶")
|
366 |
+
if 'titles' in doc.metadata:#check if it was splitted by or split_docx
|
367 |
+
chunk_counter += 1
|
368 |
+
doc.metadata['chunk_id'] = chunk_counter
|
369 |
+
doc.metadata['token_length'] = len(encoded)
|
370 |
+
resized.append(doc)
|
371 |
+
print(f"Number of chunks before resplitting: {len(documents)} \nAfter splitting: {len(resized)}")
|
372 |
+
return resized
|
373 |
+
|
374 |
+
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
|
375 |
+
|
376 |
+
def split_doc_in_chunks(input_folder):
|
377 |
+
docs = []
|
378 |
+
for i, filename in enumerate(input_folder):
|
379 |
+
path = filename#os.path.join(input_folder, filename)
|
380 |
+
print(f"Treating file {i}/{len(input_folder)}")
|
381 |
+
# Select the appropriate document loader
|
382 |
+
chunks=[]
|
383 |
+
if path.endswith(".pdf"):
|
384 |
+
try:
|
385 |
+
print("Treatment of pdf file", path)
|
386 |
+
raw_chuncks = split_pdf(path, input_folder)
|
387 |
+
chunks = group_chunks_by_section(raw_chuncks)
|
388 |
+
print(f"Document splitted in {len(chunks)} chunks")
|
389 |
+
# for chunk in chunks:
|
390 |
+
# print(f"\n\n____\n\n\nPDF CONTENT: \n{chunk.page_content}\ntitle: {chunk.metadata['title']}\nFile Name: {chunk.metadata['filename']}\n\n")
|
391 |
+
except Exception as e:
|
392 |
+
print("Error while splitting the pdf file: ", e)
|
393 |
+
elif path.endswith(".docx"):
|
394 |
+
try:
|
395 |
+
print ("Treatment of docx file", path)
|
396 |
+
raw_chuncks = split_docx(path, input_folder)
|
397 |
+
#print(f"RAW :\n***\n{raw_chuncks}")
|
398 |
+
chunks = group_chunks_by_section(raw_chuncks)
|
399 |
+
print(f"Document splitted in {len(chunks)} chunks")
|
400 |
+
#if "cards-Jan 2022-SP.docx" in path:
|
401 |
+
#for chunk in chunks:
|
402 |
+
#print(f"\n\n____\n\n\nDOCX CONTENT: \n{chunk.page_content}\ntitle: {chunk.metadata['title']}\nFile Name: {chunk.metadata['filename']}\n\n")
|
403 |
+
except Exception as e:
|
404 |
+
print("Error while splitting the docx file: ", e)
|
405 |
+
elif path.endswith(".doc"):
|
406 |
+
try:
|
407 |
+
loader = UnstructuredFileLoader(path)
|
408 |
+
# Load the documents and split them in chunks
|
409 |
+
chunks = loader.load_and_split(text_splitter=text_splitter)
|
410 |
+
counter, counter2 = collections.Counter(), collections.Counter()
|
411 |
+
filename = os.path.basename(path)
|
412 |
+
# Define a unique id for each chunk
|
413 |
+
for chunk in chunks:
|
414 |
+
chunk.metadata["filename"] = filename.split("/")[-1]
|
415 |
+
chunk.metadata["file_directory"] = filename.split("/")[:-1]
|
416 |
+
chunk.metadata["filetype"] = filename.split(".")[-1]
|
417 |
+
if "page" in chunk.metadata:
|
418 |
+
counter[chunk.metadata['page']] += 1
|
419 |
+
for i in range(len(chunks)):
|
420 |
+
counter2[chunks[i].metadata['page']] += 1
|
421 |
+
chunks[i].metadata['source'] = filename
|
422 |
+
else:
|
423 |
+
if len(chunks) == 1:
|
424 |
+
chunks[0].metadata['source'] = filename
|
425 |
+
#The file type is not supported (e.g. .xlsx)
|
426 |
+
except Exception as e:
|
427 |
+
print(f"An error occurred: {e}")
|
428 |
+
try:
|
429 |
+
if len(chunks)>0:
|
430 |
+
docs += chunks
|
431 |
+
except NameError as e:
|
432 |
+
print(f"An error has occured: {e}")
|
433 |
+
return docs
|
434 |
+
|
435 |
+
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
|
436 |
+
def resplit_by_end_of_sentence(docs):
|
437 |
+
print("❌❌\nResplitting docs by end of sentence\n❌❌")
|
438 |
+
resized_docs = split_chunks_by_tokens_period(docs, max_length=200, overlap=40, min_chunk_size=20)
|
439 |
+
try:
|
440 |
+
# add chunk title to all resplitted chunks #todo move this to split_chunks_by_tokens_period(inject_title = True) with a boolean parameter
|
441 |
+
cur_source = ""
|
442 |
+
cpt_chunk = 1
|
443 |
+
for resized_doc in resized_docs:
|
444 |
+
try:
|
445 |
+
title = resized_doc.metadata['titles'].split(' ~~ ')[-2] #Getting the last title of the chunk and adding it to the content if it is not the case
|
446 |
+
if title not in resized_doc.page_content:
|
447 |
+
resized_doc.page_content = title + "\n" + resized_doc.page_content
|
448 |
+
if cur_source == resized_doc.metadata["source"]:
|
449 |
+
resized_doc.metadata['chunk_number'] = cpt_chunk
|
450 |
+
else:
|
451 |
+
cpt_chunk = 1
|
452 |
+
cur_source = resized_doc.metadata["source"]
|
453 |
+
resized_doc.metadata['chunk_number'] = cpt_chunk
|
454 |
+
except Exception as e:#either the title was notfound or title absent in metadata
|
455 |
+
print("An error occured: ", e)
|
456 |
+
#print(f"METADATA:\n{resized_doc.metadata}")
|
457 |
+
cpt_chunk += 1
|
458 |
+
except Exception as e:
|
459 |
+
print('AN ERROR OCCURRED: ', e)
|
460 |
+
return resized_docs
|
461 |
+
|
462 |
+
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
|
463 |
+
def build_index(docs, index, output_folder):
|
464 |
+
if len(docs) > 0:
|
465 |
+
if index is not None:
|
466 |
+
# Compute the embedding of each chunk and index these chunks
|
467 |
+
new_index = FAISS.from_documents(docs, embeddings)
|
468 |
+
index.merge_from(new_index)
|
469 |
+
else:
|
470 |
+
index = FAISS.from_documents(docs, embeddings)
|
471 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
472 |
+
index.save_local(temp_dir)
|
473 |
+
for f in os.listdir(temp_dir):
|
474 |
+
output_folder.upload_file(f, os.path.join(temp_dir, f))
|