import gradio as gr from scrape_3gpp import * from excel_chat import * from classification import * from chart_generation import * from charts_advanced import * # Categories categories = [ { "topic": "Confidentiality and Privacy Protection", "description": "This topic covers the protection of confidentiality, privacy, and integrity in security systems. It also includes authentication and authorization processes.", "experts": ["Mireille"] }, { "topic": "Distributed Trust and End-User Trust Models", "description": "This topic focuses on distributed trust models and how end-users establish trust in secure systems.", "experts": ["Mireille", "Khawla"] }, { "topic": "Secure Element and Key Provisioning", "description": "This topic involves the secure element in systems and the process of key provisioning.", "experts": ["Mireille"] }, { "topic": "Residential Gateway Security", "description": "This topic covers the security aspects of Residential Gateways.", "experts": ["Mireille"] }, { "topic": "Standalone Non-Public Network (SNPN) Inter-Connection and Cybersecurity", "description": "This topic focuses on the inter-connection of Standalone Non-Public Networks and related cyber-security topics.", "experts": ["Khawla"] }, { "topic": "Distributed Ledger and Blockchain in SNPN", "description": "This topic covers the use of distributed ledger technology and blockchain in securing Standalone Non-Public Networks.", "experts": ["Khawla"] }, { "topic": "Distributed Networks and Communication", "description": "This topic involves distributed networks such as mesh networks, ad-hoc networks, and multi-hop networks, and their cyber-security aspects.", "experts": ["Guillaume"] }, { "topic": "Swarm of Drones and Unmanned Aerial Vehicles Network Infrastructure", "description": "This topic covers the network infrastructure deployed by Swarm of Drones and Unmanned Aerial Vehicles.", "experts": ["Guillaume"] }, { "topic": "USIM and Over-the-Air Services", "description": "This topic involves USIM and related over-the-air services such as Steering of Roaming, roaming services, network selection, and UE configuration.", "experts": ["Vincent"] }, { "topic": "Eco-Design and Societal Impact of Technology", "description": "This topic covers eco-design concepts, including energy saving, energy efficiency, carbon emissions, and the societal impact of technology.", "experts": ["Pierre"] }, { "topic": "Service Requirements of New Services", "description": "This topic involves defining service requirements for new services, detecting low signals of new trends and technologies, and assessing their impact on USIM services or over-the-air services.", "experts": ["Ly-Thanh"] }, { "topic": "Satellite and Non Terrestrial Networks", "description": "This topic covers satellite networks, Non Terrestrial Networks, Private Networks, IoT, Inter Satellite communication, and Radio Access Network.", "experts": ["Nicolas"] }, { "topic": "Public Safety and Emergency Communication", "description": "This topic involves Public Safety Communication, Military Communication, Emergency Calls, Emergency Services, Disaster Communication Access, and other related areas.", "experts": ["Dorin"] } ] df_cate = pd.DataFrame(categories) # def update_label(label1): # return gr.update(choices=list(df.columns)) with gr.Blocks() as demo: gr.Markdown("## Extaction, Classification and AI tool") with gr.Tab("File extraction"): gr.Markdown(" Put either just a link, or a link and an excel file with an 'Actions' column") with gr.Row(): dd_url = gr.Dropdown(label="(e.g. https://www.3gpp.org/ftp/TSG_SA/WG1_Serv/TSGS1_105_Athens/Docs)", multiselect=False, value="https://www.3gpp.org/ftp/", allow_custom_value=True, scale=9) btn_search = gr.Button("Search") with gr.Accordion("Filter by file status", open=False): with gr.Row(): dd_status = gr.Dropdown(label="Status to look for (Optional)", allow_custom_value=True, multiselect=True, scale=7) btn_search_status = gr.Button("Search for status", scale=2) btn_extract = gr.Button("Extract excel from URL") tb_message = gr.Textbox(label="Status") with gr.Tab("Query on columns with mistral"): dd_source_ask = gr.Dropdown(label="Source Column(s)", multiselect=True) tb_destcol = gr.Textbox(label="Destination column label (e.g. Summary, ELI5, PAB)") tb_prompt = gr.Textbox(label="Prompt") rd_llm = gr.Radio(["Mistral", "Claude", "Groq"], label="Choose your LLM") with gr.Accordion("Filters", open=False): with gr.Row(): dd_searchcol = gr.Dropdown(label="Column to look into (Optional)", multiselect=False, scale=4) dd_keywords = gr.Dropdown(label="Words to look for (Optional)", multiselect=True, allow_custom_value=True, scale=5) mist_button = gr.Button("Ask AI") with gr.Tab("Classification by topic"): dd_source_class = gr.Dropdown(label="Source Column", multiselect=False) gr.Markdown("### The predefined categories can be modified at any time") df_category = gr.DataFrame(label='categories', value=df_cate, interactive=True) btn_classif = gr.Button("Categorize") with gr.Tab("Charts Generation"): with gr.Row(): dd_label1 = gr.Dropdown(label="Label 1", multiselect=False) dd_label2 = gr.Dropdown(label="Label 2", multiselect=False, value="") btn_chart = gr.Button("Generate Bar Plot") plt_figure = gr.Plot() with gr.Tab("Chart Generation"): gr.Markdown("## 🚧 Actuellement en maintenance 🚧") with gr.Tab("Overall"): btn_overall = gr.Button("Overall Review") with gr.Tab("By Expert"): rd_exp=gr.Radio(["Satellite Networks / Nicolas", "Emergency Communication / Dorin", "Trend Analysis / Ly-Thanh", "Security Trust / Mireille", "Distributed Networks / Guillaume", "Network Security / Khawla", "USIM Management / Vincent", "Eco-Design / Pierre"], label="Expert Name") btn_expert = gr.Button("Top 10 by expert") with gr.Tab("By Company"): tb_com=gr.Textbox(label="Company Name",info="You can write 1, 2 or 3 company names at the same time") btn_type = gr.Button("Company info") with gr.Row(): plt_chart = gr.Plot(label="Graphique") plt_chart2 = gr.Plot(label="Graphique") plt_chart3 = gr.Plot(label="Graphique") with gr.Accordion("Excel Preview", open=False): df_output = gr.DataFrame() fi_excel = gr.File(label="Excel File") btn_search_status.click(extract_statuses, inputs=dd_url, outputs=dd_status) btn_search.click(browse_folder, inputs=dd_url, outputs=dd_url) dd_url.change(browse_folder, inputs=dd_url, outputs=dd_url) fi_excel.change(get_columns, inputs=[fi_excel], outputs=[dd_source_ask, dd_source_class, dd_label1, dd_label2, dd_searchcol, df_output]) btn_extract.click(extractionPrincipale, inputs=[dd_url, fi_excel, dd_status], outputs=[fi_excel, tb_message]) mist_button.click(chat_with_mistral, inputs=[dd_source_ask, tb_destcol, tb_prompt, fi_excel, dd_url, dd_searchcol, dd_keywords, rd_llm], outputs=[fi_excel, df_output]) btn_classif.click(classification, inputs=[dd_source_class, fi_excel, df_category], outputs=[fi_excel, df_output]) btn_chart.click(create_bar_plot, inputs=[fi_excel, dd_label1, dd_label2], outputs=[plt_figure]) btn_overall.click(generate_company_chart,inputs=[fi_excel], outputs=[plt_chart]) btn_overall.click(status_chart,inputs=[fi_excel], outputs=[plt_chart2]) btn_overall.click(category_chart,inputs=[fi_excel], outputs=[plt_chart3]) btn_expert.click(chart_by_expert,inputs=[fi_excel,rd_exp], outputs=[plt_chart]) btn_type.click(company_document_type,inputs=[fi_excel,tb_com], outputs=[plt_chart]) # dd_label1.change(update_label, inputs=[dd_label1], outputs=[dd_label2]) demo.launch(debug=True)