File size: 928 Bytes
e26d32e
5914320
3ab82e8
 
 
3eec3b2
00a8910
3ab82e8
 
3eec3b2
3f61915
5914320
 
 
 
3ab82e8
ac9faef
2b6d798
 
3ab82e8
 
5914320
ac9faef
2b6d798
5914320
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from fastapi import FastAPI, Request, Query
from fastapi.templating import Jinja2Templates
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np

app = FastAPI()
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
index = faiss.IndexFlatL2(384)  # 384 is the dimensionality of the MiniLM model

templates = Jinja2Templates(directory=".")

@app.get("/")
def read_root(request: Request):
    return templates.TemplateResponse("index.html", {"request": request})

@app.get("/embed")
def embed_string(text: str):
    embedding = model.encode([text])
    index.add(np.array(embedding))
    return {"message": "String embedded and added to FAISS database"}

@app.get("/search")
def search_string(text: str, n: int = 5):
    embedding = model.encode([text])
    distances, indices = index.search(np.array(embedding), n)
    return {"distances": distances[0].tolist(), "indices": indices[0].tolist()}