|
from fastapi import FastAPI, Request, Query |
|
from fastapi.templating import Jinja2Templates |
|
from fastapi import File, UploadFile |
|
from fastapi.responses import FileResponse |
|
from fastapi.responses import Response |
|
|
|
from pydantic import BaseModel |
|
from sentence_transformers import SentenceTransformer |
|
import faiss |
|
import numpy as np |
|
import json |
|
import io |
|
|
|
app = FastAPI() |
|
|
|
|
|
|
|
embedding_dimension = 512 |
|
|
|
model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1", truncate_dim=embedding_dimension) |
|
|
|
|
|
index = faiss.IndexFlatL2(embedding_dimension) |
|
documents = [] |
|
|
|
templates = Jinja2Templates(directory=".") |
|
|
|
class EmbedRequest(BaseModel): |
|
texts: list[str] |
|
|
|
class SearchRequest(BaseModel): |
|
text: str |
|
n: int = 5 |
|
|
|
@app.get("/") |
|
def read_root(request: Request): |
|
return templates.TemplateResponse("index.html", {"request": request}) |
|
|
|
|
|
@app.post("/embed") |
|
def embed_strings(request: EmbedRequest): |
|
new_documents = request.texts |
|
print(f"Start embedding of {len(new_documents)} docs") |
|
batch_size = 20 |
|
|
|
|
|
batches = [new_documents[i:i+batch_size] for i in range(0, len(new_documents), batch_size)] |
|
|
|
|
|
new_embeddings = [] |
|
for batch in batches: |
|
batch_embeddings = model.encode(batch) |
|
new_embeddings.extend(batch_embeddings) |
|
print(f"embeded {batch_size} docs") |
|
|
|
|
|
remaining_docs = len(new_documents) % batch_size |
|
print(f"embedind remaining {remaining_docs} docs") |
|
|
|
if remaining_docs > 0: |
|
remaining_batch = new_documents[-remaining_docs:] |
|
remaining_embeddings = model.encode(remaining_batch) |
|
new_embeddings.extend(remaining_embeddings) |
|
|
|
index.add(np.array(new_embeddings)) |
|
new_size = index.ntotal |
|
documents.extend(new_documents) |
|
print(f"End embedding {len(new_documents)} docs, new DB size: {new_size}") |
|
return { |
|
"message": f"{len(new_documents)} new strings embedded and added to FAISS database. New size of the database: {new_size}" |
|
} |
|
|
|
def embed_strings_v0(request: EmbedRequest): |
|
new_documents = request.texts |
|
new_embeddings = model.encode(new_documents) |
|
index.add(np.array(new_embeddings)) |
|
new_size = index.ntotal |
|
documents.extend(new_documents) |
|
return { |
|
"message": f"{len(new_documents)} new strings embedded and added to FAISS database. New size of the database: {new_size}" |
|
} |
|
|
|
|
|
@app.post("/search") |
|
def search_string(request: SearchRequest): |
|
embedding = model.encode([request.text]) |
|
distances, indices = index.search(np.array(embedding), request.n) |
|
|
|
|
|
found_documents = [documents[i] for i in indices[0]] |
|
|
|
return { |
|
"distances": distances[0].tolist(), |
|
"indices": indices[0].tolist(), |
|
"documents": found_documents |
|
} |
|
|
|
|
|
|
|
|
|
@app.get("/admin/database/length") |
|
def get_database_length(): |
|
return {"length": index.ntotal} |
|
|
|
@app.post("/admin/database/reset") |
|
def reset_database(): |
|
global index |
|
global documents |
|
index = faiss.IndexFlatL2(embedding_dimension) |
|
documents = [] |
|
return {"message": "Database reset"} |
|
|
|
@app.get("/admin/documents/download") |
|
def download_documents(): |
|
|
|
documents_json = json.dumps({"texts": documents}) |
|
|
|
|
|
response = Response(content=documents_json, media_type="application/json") |
|
|
|
|
|
response.headers["Content-Disposition"] = "attachment; filename=documents.json" |
|
|
|
return response |
|
|
|
@app.post("/admin/documents/upload") |
|
def upload_documents(file: UploadFile = File(...)): |
|
|
|
contents = file.file.read() |
|
|
|
|
|
data = json.loads(contents) |
|
|
|
|
|
new_documents = data["texts"] |
|
|
|
|
|
documents.extend(new_documents) |
|
|
|
return {"message": f"{len(new_documents)} new documents uploaded"} |
|
|
|
@app.post("/admin/documents/embed") |
|
def embed_documents(file: UploadFile = File(...)): |
|
|
|
contents = file.file.read() |
|
|
|
|
|
data = json.loads(contents) |
|
|
|
|
|
new_documents = data["texts"] |
|
|
|
|
|
new_embeddings = model.encode(new_documents) |
|
index.add(np.array(new_embeddings)) |
|
|
|
|
|
documents.extend(new_documents) |
|
|
|
return {"message": f"{len(new_documents)} new documents uploaded and embedded"} |
|
|
|
|
|
@app.get("/admin/database/download") |
|
def download_database(): |
|
|
|
faiss.write_index(index, "database.index") |
|
|
|
|
|
response = FileResponse("database.index", media_type="application/octet-stream") |
|
|
|
|
|
response.headers["Content-Disposition"] = "attachment; filename=database.index" |
|
|
|
return response |
|
|
|
|
|
@app.post("/admin/database/upload") |
|
def upload_database(file: UploadFile = File(...)): |
|
|
|
|
|
|
|
|
|
with open(file.filename, "wb") as f: |
|
f.write(file.file.read()) |
|
|
|
|
|
global index |
|
index = faiss.read_index(file.filename) |
|
|
|
return {"message": f"Database uploaded with {index.ntotal} embeddings"} |
|
|
|
|
|
|
|
def upload_database_1(file: UploadFile = File(...)): |
|
|
|
with open(file.filename, "wb") as f: |
|
f.write(file.file.read()) |
|
|
|
|
|
with open(file.filename, "rb") as f: |
|
|
|
global index |
|
index = faiss.read_index_binary(f) |
|
|
|
|
|
global documents |
|
documents = index.reconstruct_n(0, index.ntotal).tolist() |
|
|
|
return {"message": f"Database uploaded with {len(documents)} documents"} |
|
|
|
|
|
def upload_database_0(file: UploadFile = File(...)): |
|
|
|
contents = file.file.read() |
|
|
|
|
|
global index |
|
index = faiss.read_index_binary(contents) |
|
|
|
|
|
|
|
|
|
|
|
return {"message": f"Database uploaded with {index.ntotal} embeddings"} |
|
|