from fastapi import FastAPI from sentence_transformers import SentenceTransformer import faiss import numpy as np app = FastAPI() model = SentenceTransformer('paraphrase-MiniLM-L6-v2') index = faiss.IndexFlatL2(384) # 384 is the dimensionality of the MiniLM model @app.get("/") def greet_json(): return {"Hello": "World!"} @app.post("/embed") def embed_string(text: str): embedding = model.encode([text]) index.add(np.array(embedding)) return {"message": "String embedded and added to FAISS database"}