File size: 4,908 Bytes
537fd2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import warnings
warnings.filterwarnings("ignore", category=FutureWarning) # nopep8
warnings.filterwarnings("ignore", category=UserWarning) # nopep8
import os
import math
from tqdm import tqdm
import torch
from PIL import Image, ImageFilter
from scipy.ndimage import binary_dilation
import numpy as np
from captioner import init as init_captioner, derive_caption
from upscaler import init as init_upscaler
from segmenter import init as init_segmenter, segment
from depth_estimator import init as init_depth_estimator, get_depth_map
from pipeline import init as init_pipeline, run_pipeline
from image_utils import ensure_resolution, crop_centered
developer_mode = os.getenv('DEV_MODE', False)
init_captioner()
init_upscaler()
init_segmenter()
init_depth_estimator()
init_pipeline()
torch.cuda.empty_cache()
POSITIVE_PROMPT_SUFFIX = "commercial product photography, 24mm lens f/8"
NEGATIVE_PROMPT_SUFFIX = "cartoon, drawing, anime, semi-realistic, illustration, painting, art, text, greyscale, (black and white), lens flare, watermark, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, floating, levitating"
MEGAPIXELS = 1.0
def replace_background(
original,
positive_prompt,
negative_prompt,
options,
):
pbar = tqdm(total=7)
print("Original size:", original.size)
print("Captioning...")
caption = derive_caption(original)
pbar.update(1)
print("Caption:", caption)
torch.cuda.empty_cache()
print(f"Ensuring resolution ({MEGAPIXELS}MP)...")
resized = ensure_resolution(original, megapixels=MEGAPIXELS)
pbar.update(1)
print("Resized size:", resized.size)
torch.cuda.empty_cache()
print("Segmenting...")
[cropped, crop_mask] = segment(resized)
pbar.update(1)
torch.cuda.empty_cache()
print("Depth mapping...")
depth_map = get_depth_map(resized)
pbar.update(1)
torch.cuda.empty_cache()
print("Feathering the depth map...")
# Convert crop mask to grayscale and to numpy array
crop_mask_np = np.array(crop_mask.convert('L'))
# Convert to binary and dilate (grow) the edges
# adjust threshold as needed
crop_mask_binary = crop_mask_np > options.get(
'depth_map_feather_threshold')
# adjust iterations as needed
dilated_mask = binary_dilation(
crop_mask_binary, iterations=options.get('depth_map_dilation_iterations'))
# Convert back to PIL Image
dilated_mask = Image.fromarray((dilated_mask * 255).astype(np.uint8))
# Apply Gaussian blur and normalize
dilated_mask_blurred = dilated_mask.filter(
ImageFilter.GaussianBlur(radius=options.get('depth_map_blur_radius')))
dilated_mask_blurred_np = np.array(dilated_mask_blurred) / 255.0
# Normalize depth map, apply blurred, dilated mask, and scale back
depth_map_np = np.array(depth_map.convert('L')) / 255.0
masked_depth_map_np = depth_map_np * dilated_mask_blurred_np
masked_depth_map_np = (masked_depth_map_np * 255).astype(np.uint8)
# Convert back to PIL Image
masked_depth_map = Image.fromarray(masked_depth_map_np).convert('RGB')
pbar.update(1)
final_positive_prompt = f"{caption}, {positive_prompt}, {POSITIVE_PROMPT_SUFFIX}"
final_negative_prompt = f"{negative_prompt}, {NEGATIVE_PROMPT_SUFFIX}"
print("Final positive prompt:", final_positive_prompt)
print("Final negative prompt:", final_negative_prompt)
print("Generating...")
generated_images = run_pipeline(
positive_prompt=final_positive_prompt,
negative_prompt=final_negative_prompt,
image=[masked_depth_map],
seed=options.get('seed')
)
pbar.update(1)
torch.cuda.empty_cache()
print("Compositing...")
composited_images = [
Image.alpha_composite(
generated_image.convert('RGBA'),
crop_centered(cropped, generated_image.size)
) for generated_image in generated_images
]
pbar.update(1)
pbar.close()
print("Done!")
if developer_mode:
pre_processing_images = [
[resized, "Resized"],
[crop_mask, "Crop mask"],
[cropped, "Cropped"],
[depth_map, "Depth map"],
[dilated_mask, "Dilated mask"],
[dilated_mask_blurred, "Dilated mask blurred"],
[masked_depth_map, "Masked depth map"]
]
return [
composited_images,
generated_images,
pre_processing_images,
caption,
]
else:
return [composited_images, None, None, None]
|