Spaces:
Sleeping
Sleeping
import torch | |
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL, UniPCMultistepScheduler | |
pipe = None | |
def init(): | |
global pipe | |
print("Initializing depth ControlNet...") | |
depth_controlnet = ControlNetModel.from_pretrained( | |
"diffusers/controlnet-depth-sdxl-1.0", | |
use_safetensors=True, | |
torch_dtype=torch.float16 | |
).to("cuda") | |
print("Initializing autoencoder...") | |
vae = AutoencoderKL.from_pretrained( | |
"madebyollin/sdxl-vae-fp16-fix", | |
torch_dtype=torch.float16, | |
).to("cuda") | |
print("Initializing SDXL pipeline...") | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
controlnet=[depth_controlnet], | |
vae=vae, | |
variant="fp16", | |
use_safetensors=True, | |
torch_dtype=torch.float16 | |
# low_cpu_mem_usage=True | |
).to("cuda") | |
pipe.enable_model_cpu_offload() | |
# speed up diffusion process with faster scheduler and memory optimization | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
# remove following line if xformers is not installed | |
pipe.enable_xformers_memory_efficient_attention() | |
def run_pipeline(image, positive_prompt, negative_prompt, seed): | |
if seed == -1: | |
print("Using random seed") | |
generator = None | |
else: | |
print("Using seed:", seed) | |
generator = torch.manual_seed(seed) | |
images = pipe( | |
prompt=positive_prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=30, | |
num_images_per_prompt=4, | |
controlnet_conditioning_scale=0.65, | |
guidance_scale=10.0, | |
generator=generator, | |
image=image | |
).images | |
return images | |