Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,677 Bytes
b91cd97 14c1dbf be34a3d 95eaf4d 005776b be34a3d f455b6d be34a3d 9e7100f a935b35 5aadc08 5a65b34 a935b35 5aadc08 f168dbf a935b35 5aadc08 a935b35 5aadc08 f168dbf a935b35 be34a3d e5e92a0 5aadc08 a935b35 5aadc08 a935b35 be34a3d 5aadc08 a935b35 5aadc08 a935b35 f50300f 5aadc08 a935b35 be34a3d a935b35 5aadc08 a935b35 6beac6b 5aadc08 a935b35 be34a3d a935b35 5aadc08 a935b35 5aadc08 a935b35 5aadc08 a935b35 5aadc08 f50300f 5aadc08 005776b 5aadc08 005776b a935b35 5aadc08 a935b35 23cbdcd 5aadc08 23cbdcd be34a3d 23cbdcd be34a3d a935b35 d3dabcd a935b35 51c2831 5aadc08 a935b35 5aadc08 a935b35 be34a3d a935b35 eab6e9f a935b35 3c34a7f a935b35 3c34a7f 5aadc08 a935b35 5aadc08 a935b35 5aadc08 a935b35 5aadc08 a935b35 5aadc08 a935b35 5aadc08 a935b35 5aadc08 23ca056 5aadc08 be34a3d a935b35 5aadc08 a935b35 5aadc08 be34a3d 5aadc08 a935b35 f455b6d a935b35 f455b6d a935b35 e91c889 a935b35 e91c889 a935b35 5aadc08 f2e4ce4 fcb62dc 2fb22e9 fcb62dc 5aadc08 a935b35 e91c889 5aadc08 a935b35 5aadc08 a935b35 be34a3d 5aadc08 a935b35 5aadc08 a935b35 5aadc08 a935b35 5aadc08 a935b35 5aadc08 a935b35 5aadc08 a935b35 5aadc08 ac8a2f1 5aadc08 8b28d2b 005776b 5aadc08 23cbdcd a935b35 23cbdcd 5aadc08 a935b35 5aadc08 b87fd1b 005776b be34a3d 5aadc08 c11232c a935b35 5aadc08 7690a4d 5aadc08 fcb62dc 5aadc08 616c82c a935b35 5aadc08 005776b 5aadc08 a935b35 5aadc08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
import os
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
os.makedirs("/home/user/app/checkpoints", exist_ok=True)
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="Alpha-VLLM/Lumina-Next-SFT", local_dir="/home/user/app/checkpoints"
)
hf_token = os.environ["HF_TOKEN"]
import argparse
import builtins
import json
import math
import multiprocessing as mp
import os
import random
import socket
import traceback
from PIL import Image
import spaces
import gradio as gr
import numpy as np
from safetensors.torch import load_file
import torch
from torchvision.transforms.functional import to_pil_image
import models
from transport import Sampler, create_transport
class ModelFailure:
pass
# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(prompt_batch, text_encoder, tokenizer, proportion_empty_prompts, is_train=True):
captions = []
for caption in prompt_batch:
if random.random() < proportion_empty_prompts:
captions.append("")
elif isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
with torch.no_grad():
text_inputs = tokenizer(
captions,
padding=True,
pad_to_multiple_of=8,
max_length=256,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_masks = text_inputs.attention_mask
prompt_embeds = text_encoder(
input_ids=text_input_ids.cuda(),
attention_mask=prompt_masks.cuda(),
output_hidden_states=True,
).hidden_states[-2]
return prompt_embeds, prompt_masks
@torch.no_grad()
def load_models(args, master_port, rank):
# import here to avoid huggingface Tokenizer parallelism warnings
from diffusers.models import AutoencoderKL
from transformers import AutoModel, AutoTokenizer
# override the default print function since the delay can be large for child process
original_print = builtins.print
# Redefine the print function with flush=True by default
def print(*args, **kwargs):
kwargs.setdefault("flush", True)
original_print(*args, **kwargs)
# Override the built-in print with the new version
builtins.print = print
train_args = torch.load(os.path.join(args.ckpt, "model_args.pth"))
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[args.precision]
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Loaded model arguments:", json.dumps(train_args.__dict__, indent=2))
print(f"Creating lm: Gemma-2B")
text_encoder = AutoModel.from_pretrained(
"google/gemma-2b", torch_dtype=dtype, device_map=device, token=hf_token
).eval()
cap_feat_dim = text_encoder.config.hidden_size
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b", token=hf_token, add_bos_token=True, add_eos_token=True)
tokenizer.padding_side = "right"
print(f"Creating vae: {train_args.vae}")
vae = AutoencoderKL.from_pretrained(
(f"stabilityai/sd-vae-ft-{train_args.vae}" if train_args.vae != "sdxl" else "stabilityai/sdxl-vae"),
torch_dtype=torch.float32,
).cuda()
print(f"Creating Next-DiT: {train_args.model}")
# latent_size = train_args.image_size // 8
model = models.__dict__[train_args.model](
qk_norm=train_args.qk_norm,
cap_feat_dim=cap_feat_dim,
)
model.eval().to(device, dtype=dtype)
if args.ema:
print("Loading ema model.")
ckpt = load_file(
os.path.join(
args.ckpt,
f"consolidated{'_ema' if args.ema else ''}.{rank:02d}-of-{args.num_gpus:02d}.safetensors",
)
)
model.load_state_dict(ckpt, strict=True)
return text_encoder, tokenizer, vae, model
@torch.no_grad()
def infer_ode(args, infer_args, text_encoder, tokenizer, vae, model):
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[
args.precision
]
train_args = torch.load(os.path.join(args.ckpt, "model_args.pth"))
torch.cuda.set_device(0)
with torch.autocast("cuda", dtype):
while True:
(
cap,
neg_cap,
resolution,
num_sampling_steps,
cfg_scale,
solver,
t_shift,
seed,
scaling_method,
scaling_watershed,
proportional_attn,
) = infer_args
metadata = dict(
cap=cap,
neg_cap=neg_cap,
resolution=resolution,
num_sampling_steps=num_sampling_steps,
cfg_scale=cfg_scale,
solver=solver,
t_shift=t_shift,
seed=seed,
# scaling_method=scaling_method,
# scaling_watershed=scaling_watershed,
# proportional_attn=proportional_attn,
)
print("> params:", json.dumps(metadata, indent=2))
try:
# begin sampler
transport = create_transport(
args.path_type,
args.prediction,
args.loss_weight,
args.train_eps,
args.sample_eps,
)
sampler = Sampler(transport)
sample_fn = sampler.sample_ode(
sampling_method=solver,
num_steps=num_sampling_steps,
atol=args.atol,
rtol=args.rtol,
reverse=args.reverse,
time_shifting_factor=t_shift,
)
# end sampler
do_extrapolation = "Extrapolation" in resolution
resolution = resolution.split(" ")[-1]
w, h = resolution.split("x")
w, h = int(w), int(h)
latent_w, latent_h = w // 8, h // 8
if int(seed) != 0:
torch.random.manual_seed(int(seed))
z = torch.randn([1, 4, latent_h, latent_w], device="cuda").to(dtype)
z = z.repeat(2, 1, 1, 1)
with torch.no_grad():
if neg_cap != "":
cap_feats, cap_mask = encode_prompt([cap] + [neg_cap], text_encoder, tokenizer, 0.0)
else:
cap_feats, cap_mask = encode_prompt([cap] + [""], text_encoder, tokenizer, 0.0)
cap_mask = cap_mask.to(cap_feats.device)
model_kwargs = dict(
cap_feats=cap_feats,
cap_mask=cap_mask,
cfg_scale=cfg_scale,
)
if proportional_attn:
model_kwargs["proportional_attn"] = True
model_kwargs["base_seqlen"] = (train_args.image_size // 16) ** 2
else:
model_kwargs["proportional_attn"] = False
model_kwargs["base_seqlen"] = None
if do_extrapolation and scaling_method == "Time-aware":
model_kwargs["scale_factor"] = math.sqrt(w * h / train_args.image_size**2)
model_kwargs["scale_watershed"] = scaling_watershed
else:
model_kwargs["scale_factor"] = 1.0
model_kwargs["scale_watershed"] = 1.0
print("> start sample")
samples = sample_fn(z, model.forward_with_cfg, **model_kwargs)[-1]
samples = samples[:1]
factor = 0.18215 if train_args.vae != "sdxl" else 0.13025
print(f"> vae factor: {factor}")
samples = vae.decode(samples / factor).sample
samples = (samples + 1.0) / 2.0
samples.clamp_(0.0, 1.0)
img = to_pil_image(samples[0].float())
print("> generated image, done.")
return img, metadata
except Exception:
print(traceback.format_exc())
return ModelFailure()
def none_or_str(value):
if value == "None":
return None
return value
def parse_transport_args(parser):
group = parser.add_argument_group("Transport arguments")
group.add_argument(
"--path-type",
type=str,
default="Linear",
choices=["Linear", "GVP", "VP"],
help="the type of path for transport: 'Linear', 'GVP' (Geodesic Vector Pursuit), or 'VP' (Vector Pursuit).",
)
group.add_argument(
"--prediction",
type=str,
default="velocity",
choices=["velocity", "score", "noise"],
help="the prediction model for the transport dynamics.",
)
group.add_argument(
"--loss-weight",
type=none_or_str,
default=None,
choices=[None, "velocity", "likelihood"],
help="the weighting of different components in the loss function, can be 'velocity' for dynamic modeling, 'likelihood' for statistical consistency, or None for no weighting.",
)
group.add_argument("--sample-eps", type=float, help="sampling in the transport model.")
group.add_argument("--train-eps", type=float, help="training to stabilize the learning process.")
def parse_ode_args(parser):
group = parser.add_argument_group("ODE arguments")
group.add_argument(
"--atol",
type=float,
default=1e-6,
help="Absolute tolerance for the ODE solver.",
)
group.add_argument(
"--rtol",
type=float,
default=1e-3,
help="Relative tolerance for the ODE solver.",
)
group.add_argument("--reverse", action="store_true", help="run the ODE solver in reverse.")
group.add_argument(
"--likelihood",
action="store_true",
help="Enable calculation of likelihood during the ODE solving process.",
)
def find_free_port() -> int:
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(("", 0))
port = sock.getsockname()[1]
sock.close()
return port
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--num_gpus", type=int, default=1)
parser.add_argument("--ckpt", type=str, default="/home/user/app/checkpoints")
parser.add_argument("--ema", type=bool, default=True)
parser.add_argument("--precision", default="bf16", choices=["bf16", "fp32"])
parse_transport_args(parser)
parse_ode_args(parser)
args = parser.parse_known_args()[0]
args.sampler_mode = "ODE"
if args.num_gpus != 1:
raise NotImplementedError("Multi-GPU Inference is not yet supported")
text_encoder, tokenizer, vae, model = load_models(args, 60001, 0)
description = """
# Lumina Next Text-to-Image
Lumina-Next-SFT is a 2B Next-DiT model with 2B text encoder.
Demo current model: `Lumina-Next-SFT 1k Resolution`
### <span style='color: red;'> Lumina-Next-T2I enables zero-shot resolution extrapolation to 2k.
### Lumina-Next supports higher-order solvers ["euler", "midpoint"].
### <span style='color: orange;'>It can generate images with merely 10 steps without any distillation for 1K resolution generation.
### <span style='color: orange;'>Tip: For improved human portrait generation, please choose resolution at 1024x2048.
### To reduce waiting times, we are offering three parallel demos:
Lumina-T2I 2B model: [[demo (supported 2k inference)](http://106.14.2.150:10020/)] [[demo (supported 2k inference)](http://106.14.2.150:10021/)] [[demo (supported 2k inference)](http://106.14.2.150:10022/)] [[demo (compositional generation)](http://106.14.2.150:10023/)]
"""
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown(description)
with gr.Row():
with gr.Column():
cap = gr.Textbox(
lines=2,
label="Caption",
interactive=True,
value="Miss Mexico portrait of the most beautiful mexican woman, Exquisite detail, 30-megapixel, 4k, 85-mm-lens, sharp-focus, f:8, "
"ISO 100, shutter-speed 1:125, diffuse-back-lighting, award-winning photograph, small-catchlight, High-sharpness, facial-symmetry, 8k",
placeholder="Enter a caption.",
)
neg_cap = gr.Textbox(
lines=2,
label="Negative Caption",
interactive=True,
value="low resolution, low quality, blurry",
placeholder="Enter a negative caption.",
)
with gr.Row():
res_choices = [
"1024x1024",
"512x2048",
"2048x512",
"(Extrapolation) 1536x1536",
"(Extrapolation) 2048x1024",
"(Extrapolation) 1024x2048",
]
resolution = gr.Dropdown(value=res_choices[0], choices=res_choices, label="Resolution")
with gr.Row():
num_sampling_steps = gr.Slider(
minimum=1,
maximum=70,
value=30,
step=1,
interactive=True,
label="Sampling steps",
)
seed = gr.Slider(
minimum=0,
maximum=int(1e5),
value=25,
step=1,
interactive=True,
label="Seed (0 for random)",
)
with gr.Row():
solver = gr.Dropdown(
value="midpoint",
choices=["euler", "midpoint"],
label="Solver",
)
t_shift = gr.Slider(
minimum=1,
maximum=20,
value=6,
step=1,
interactive=True,
label="Time shift",
)
cfg_scale = gr.Slider(
minimum=1.0,
maximum=20.0,
value=4.0,
interactive=True,
label="CFG scale",
)
with gr.Accordion("Advanced Settings for Resolution Extrapolation", open=False, visible=False):
with gr.Row():
scaling_method = gr.Dropdown(
value="None",
choices=["None"],
label="RoPE scaling method",
)
scaling_watershed = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.3,
interactive=True,
label="Linear/NTK watershed",
visible=False,
)
with gr.Row():
proportional_attn = gr.Checkbox(
value=True,
interactive=True,
label="Proportional attention",
)
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column():
output_img = gr.Image(
label="Generated image",
interactive=False,
format="png"
)
with gr.Accordion(label="Generation Parameters", open=True):
gr_metadata = gr.JSON(label="metadata", show_label=False)
with gr.Row():
gr.Examples(
[
["An old sailor, weathered by years at sea, stands at the helm of his ship, eyes scanning the horizon for signs of land, his face lined with tales of adventure and hardship."], # noqa
["A regal swan glides gracefully across the surface of a tranquil lake, its snowy white feathers ruffled by the gentle breeze."], # noqa
["A cunning fox, agilely weaving through the forest, its eyes sharp and alert, always ready for prey."], # noqa
["Inka warrior with a war make up, medium shot, natural light, Award winning wildlife photography, hyperrealistic, 8k resolution."], # noqa
["Quaint rustic witch's cabin by the lake, autumn forest background, orange and honey colors, beautiful composition, magical, warm glowing lighting, cloudy, dreamy masterpiece, Nikon D610, photorealism, highly artistic, highly detailed, ultra high resolution, sharp focus, Mysterious."], # noqa
],
[cap],
label="Examples",
examples_per_page=80,
)
@spaces.GPU(duration=200)
def on_submit(*infer_args, progress=gr.Progress(track_tqdm=True),):
result = infer_ode(args, infer_args, text_encoder, tokenizer, vae, model)
if isinstance(result, ModelFailure):
raise RuntimeError("Model failed to generate the image.")
return result
submit_btn.click(
on_submit,
[
cap,
neg_cap,
resolution,
num_sampling_steps,
cfg_scale,
solver,
t_shift,
seed,
scaling_method,
scaling_watershed,
proportional_attn,
],
[output_img, gr_metadata],
)
def show_scaling_watershed(scaling_m):
return gr.update(visible=scaling_m == "Time-aware")
scaling_method.change(show_scaling_watershed, scaling_method, scaling_watershed)
demo.queue().launch(server_name="0.0.0.0")
if __name__ == "__main__":
main()
|