Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# GLIDE: https://github.com/openai/glide-text2im | |
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py | |
# -------------------------------------------------------- | |
import math | |
from typing import List, Optional, Tuple | |
from flash_attn import flash_attn_varlen_func | |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
import torch | |
import torch.distributed as dist | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .components import RMSNorm | |
def modulate(x, scale): | |
return x * (1 + scale.unsqueeze(1)) | |
############################################################################# | |
# Embedding Layers for Timesteps and Class Labels # | |
############################################################################# | |
class ParallelTimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear( | |
frequency_embedding_size, | |
hidden_size, | |
bias=True, | |
), | |
nn.SiLU(), | |
nn.Linear( | |
hidden_size, | |
hidden_size, | |
bias=True, | |
), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
half = dim // 2 | |
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( | |
device=t.device | |
) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
t_emb = self.mlp(t_freq.to(self.mlp[0].weight.dtype)) | |
return t_emb | |
class ParallelLabelEmbedder(nn.Module): | |
r"""Embeds class labels into vector representations. Also handles label | |
dropout for classifier-free guidance. | |
""" | |
def __init__(self, num_classes, hidden_size, dropout_prob): | |
super().__init__() | |
use_cfg_embedding = int(dropout_prob > 0) | |
self.embedding_table = nn.Embedding( | |
num_classes + use_cfg_embedding | |
) | |
self.num_classes = num_classes | |
self.dropout_prob = dropout_prob | |
def token_drop(self, labels, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob | |
drop_ids = drop_ids.cuda() | |
drop_ids = drop_ids.to(labels.device) | |
else: | |
drop_ids = force_drop_ids == 1 | |
labels = torch.where(drop_ids, self.num_classes, labels) | |
return labels | |
def forward(self, labels, train, force_drop_ids=None): | |
use_dropout = self.dropout_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
labels = self.token_drop(labels, force_drop_ids) | |
embeddings = self.embedding_table(labels) | |
return embeddings | |
############################################################################# | |
# Core NextDiT Model # | |
############################################################################# | |
class Attention(nn.Module): | |
"""Multi-head attention module.""" | |
def __init__( | |
self, | |
dim: int, | |
n_heads: int, | |
n_kv_heads: Optional[int], | |
qk_norm: bool, | |
y_dim: int, | |
): | |
""" | |
Initialize the Attention module. | |
Args: | |
dim (int): Number of input dimensions. | |
n_heads (int): Number of heads. | |
n_kv_heads (Optional[int]): Number of kv heads, if using GQA. | |
""" | |
super().__init__() | |
self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads | |
self.n_heads = n_heads | |
self.n_kv_heads = self.n_kv_heads | |
self.n_rep = self.n_heads // self.n_kv_heads | |
self.head_dim = dim // n_heads | |
self.wq = nn.Linear( | |
dim, | |
n_heads * self.head_dim, | |
bias=False, | |
) | |
self.wk = nn.Linear( | |
dim, | |
self.n_kv_heads * self.head_dim, | |
bias=False, | |
) | |
self.wv = nn.Linear( | |
dim, | |
self.n_kv_heads * self.head_dim, | |
bias=False, | |
) | |
if y_dim > 0: | |
self.wk_y = nn.Linear( | |
y_dim, | |
self.n_kv_heads * self.head_dim, | |
bias=False, | |
) | |
self.wv_y = nn.Linear( | |
y_dim, | |
self.n_kv_heads * self.head_dim, | |
bias=False, | |
) | |
self.gate = nn.Parameter(torch.zeros([self.n_heads])) | |
self.wo = nn.Linear( | |
n_heads * self.head_dim, | |
dim, | |
bias=False, | |
) | |
if qk_norm: | |
self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim) | |
self.k_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim) | |
if y_dim > 0: | |
self.ky_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim) | |
else: | |
self.ky_norm = nn.Identity() | |
else: | |
self.q_norm = self.k_norm = nn.Identity() | |
self.ky_norm = nn.Identity() | |
# for proportional attention computation | |
self.base_seqlen = None | |
self.proportional_attn = False | |
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): | |
""" | |
Reshape frequency tensor for broadcasting it with another tensor. | |
This function reshapes the frequency tensor to have the same shape as | |
the target tensor 'x' for the purpose of broadcasting the frequency | |
tensor during element-wise operations. | |
Args: | |
freqs_cis (torch.Tensor): Frequency tensor to be reshaped. | |
x (torch.Tensor): Target tensor for broadcasting compatibility. | |
Returns: | |
torch.Tensor: Reshaped frequency tensor. | |
Raises: | |
AssertionError: If the frequency tensor doesn't match the expected | |
shape. | |
AssertionError: If the target tensor 'x' doesn't have the expected | |
number of dimensions. | |
""" | |
ndim = x.ndim | |
assert 0 <= 1 < ndim | |
assert freqs_cis.shape == (x.shape[1], x.shape[-1]) | |
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] | |
return freqs_cis.view(*shape) | |
def apply_rotary_emb( | |
x_in: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
) -> torch.Tensor: | |
""" | |
Apply rotary embeddings to input tensors using the given frequency | |
tensor. | |
This function applies rotary embeddings to the given query 'xq' and | |
key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The | |
input tensors are reshaped as complex numbers, and the frequency tensor | |
is reshaped for broadcasting compatibility. The resulting tensors | |
contain rotary embeddings and are returned as real tensors. | |
Args: | |
x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings. | |
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex | |
exponentials. | |
Returns: | |
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor | |
and key tensor with rotary embeddings. | |
""" | |
with torch.cuda.amp.autocast(enabled=False): | |
x = torch.view_as_complex(x_in.float().reshape(*x_in.shape[:-1], -1, 2)) | |
freqs_cis = freqs_cis.unsqueeze(2) | |
x_out = torch.view_as_real(x * freqs_cis).flatten(3) | |
return x_out.type_as(x_in) | |
# copied from huggingface modeling_llama.py | |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
key_layer = index_first_axis( | |
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), | |
indices_k, | |
) | |
value_layer = index_first_axis( | |
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), | |
indices_k, | |
) | |
if query_length == kv_seq_len: | |
query_layer = index_first_axis( | |
query_layer.reshape(batch_size * kv_seq_len, self.n_heads, head_dim), | |
indices_k, | |
) | |
cu_seqlens_q = cu_seqlens_k | |
max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
indices_q = indices_k | |
elif query_length == 1: | |
max_seqlen_in_batch_q = 1 | |
cu_seqlens_q = torch.arange( | |
batch_size + 1, dtype=torch.int32, device=query_layer.device | |
) # There is a memcpy here, that is very bad. | |
indices_q = cu_seqlens_q[:-1] | |
query_layer = query_layer.squeeze(1) | |
else: | |
# The -q_len: slice assumes left padding. | |
attention_mask = attention_mask[:, -query_length:] | |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
return ( | |
query_layer, | |
key_layer, | |
value_layer, | |
indices_q, | |
(cu_seqlens_q, cu_seqlens_k), | |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
x_mask: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
y: torch.Tensor, | |
y_mask: torch.Tensor, | |
) -> torch.Tensor: | |
""" | |
Args: | |
x: | |
x_mask: | |
freqs_cis: | |
y: | |
y_mask: | |
Returns: | |
""" | |
bsz, seqlen, _ = x.shape | |
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) | |
dtype = xq.dtype | |
xq = self.q_norm(xq) | |
xk = self.k_norm(xk) | |
xq = xq.view(bsz, seqlen, self.n_heads, self.head_dim) | |
xk = xk.view(bsz, seqlen, self.n_kv_heads, self.head_dim) | |
xv = xv.view(bsz, seqlen, self.n_kv_heads, self.head_dim) | |
xq = Attention.apply_rotary_emb(xq, freqs_cis=freqs_cis) | |
xk = Attention.apply_rotary_emb(xk, freqs_cis=freqs_cis) | |
xq, xk = xq.to(dtype), xk.to(dtype) | |
if self.proportional_attn: | |
softmax_scale = math.sqrt(math.log(seqlen, self.base_seqlen) / self.head_dim) | |
else: | |
softmax_scale = math.sqrt(1 / self.head_dim) | |
if dtype in [torch.float16, torch.bfloat16]: | |
# begin var_len flash attn | |
( | |
query_states, | |
key_states, | |
value_states, | |
indices_q, | |
cu_seq_lens, | |
max_seq_lens, | |
) = self._upad_input(xq, xk, xv, x_mask, seqlen) | |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=0.0, | |
causal=False, | |
softmax_scale=softmax_scale, | |
) | |
output = pad_input(attn_output_unpad, indices_q, bsz, seqlen) | |
# end var_len_flash_attn | |
else: | |
output = ( | |
F.scaled_dot_product_attention( | |
xq.permute(0, 2, 1, 3), | |
xk.permute(0, 2, 1, 3), | |
xv.permute(0, 2, 1, 3), | |
attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_heads, seqlen, -1), | |
scale=softmax_scale, | |
) | |
.permute(0, 2, 1, 3) | |
.to(dtype) | |
) | |
if hasattr(self, "wk_y"): | |
yk = self.ky_norm(self.wk_y(y)).view(bsz, -1, self.n_kv_heads, self.head_dim) | |
yv = self.wv_y(y).view(bsz, -1, self.n_kv_heads, self.head_dim) | |
n_rep = self.n_heads // self.n_kv_heads | |
if n_rep >= 1: | |
yk = yk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) | |
yv = yv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) | |
output_y = F.scaled_dot_product_attention( | |
xq.permute(0, 2, 1, 3), | |
yk.permute(0, 2, 1, 3), | |
yv.permute(0, 2, 1, 3), | |
y_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_heads, seqlen, -1), | |
).permute(0, 2, 1, 3) | |
output_y = output_y * self.gate.tanh().view(1, 1, -1, 1) | |
output = output + output_y | |
output = output.flatten(-2) | |
return self.wo(output) | |
class FeedForward(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
hidden_dim: int, | |
multiple_of: int, | |
ffn_dim_multiplier: Optional[float], | |
): | |
""" | |
Initialize the FeedForward module. | |
Args: | |
dim (int): Input dimension. | |
hidden_dim (int): Hidden dimension of the feedforward layer. | |
multiple_of (int): Value to ensure hidden dimension is a multiple | |
of this value. | |
ffn_dim_multiplier (float, optional): Custom multiplier for hidden | |
dimension. Defaults to None. | |
Attributes: | |
w1 (nn.Linear): Linear transformation for the first | |
layer. | |
w2 (nn.Linear): Linear transformation for the second layer. | |
w3 (nn.Linear): Linear transformation for the third | |
layer. | |
""" | |
super().__init__() | |
hidden_dim = int(2 * hidden_dim / 3) | |
# custom dim factor multiplier | |
if ffn_dim_multiplier is not None: | |
hidden_dim = int(ffn_dim_multiplier * hidden_dim) | |
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
self.w1 = nn.Linear( | |
dim, | |
hidden_dim, | |
bias=False, | |
) | |
self.w2 = nn.Linear( | |
hidden_dim, | |
dim, | |
bias=False, | |
) | |
self.w3 = nn.Linear( | |
dim, | |
hidden_dim, | |
bias=False, | |
) | |
# @torch.compile | |
def _forward_silu_gating(self, x1, x3): | |
return F.silu(x1) * x3 | |
def forward(self, x): | |
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x))) | |
class TransformerBlock(nn.Module): | |
def __init__( | |
self, | |
layer_id: int, | |
dim: int, | |
n_heads: int, | |
n_kv_heads: int, | |
multiple_of: int, | |
ffn_dim_multiplier: float, | |
norm_eps: float, | |
qk_norm: bool, | |
y_dim: int, | |
) -> None: | |
""" | |
Initialize a TransformerBlock. | |
Args: | |
layer_id (int): Identifier for the layer. | |
dim (int): Embedding dimension of the input features. | |
n_heads (int): Number of attention heads. | |
n_kv_heads (Optional[int]): Number of attention heads in key and | |
value features (if using GQA), or set to None for the same as | |
query. | |
multiple_of (int): | |
ffn_dim_multiplier (float): | |
norm_eps (float): | |
Attributes: | |
n_heads (int): Number of attention heads. | |
dim (int): Dimension size of the model. | |
head_dim (int): Dimension size of each attention head. | |
attention (Attention): Attention module. | |
feed_forward (FeedForward): FeedForward module. | |
layer_id (int): Identifier for the layer. | |
attention_norm (RMSNorm): Layer normalization for attention output. | |
ffn_norm (RMSNorm): Layer normalization for feedforward output. | |
""" | |
super().__init__() | |
self.dim = dim | |
self.head_dim = dim // n_heads | |
self.attention = Attention(dim, n_heads, n_kv_heads, qk_norm, y_dim) | |
self.feed_forward = FeedForward( | |
dim=dim, | |
hidden_dim=4 * dim, | |
multiple_of=multiple_of, | |
ffn_dim_multiplier=ffn_dim_multiplier, | |
) | |
self.layer_id = layer_id | |
self.attention_norm1 = RMSNorm(dim, eps=norm_eps) | |
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps) | |
self.attention_norm2 = RMSNorm(dim, eps=norm_eps) | |
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear( | |
min(dim, 1024), | |
4 * dim, | |
bias=True, | |
), | |
) | |
self.attention_y_norm = RMSNorm(y_dim, eps=norm_eps) | |
def forward( | |
self, | |
x: torch.Tensor, | |
x_mask: torch.Tensor, | |
freqs_cis: torch.Tensor, | |
y: torch.Tensor, | |
y_mask: torch.Tensor, | |
adaln_input: Optional[torch.Tensor] = None, | |
): | |
""" | |
Perform a forward pass through the TransformerBlock. | |
Args: | |
x (torch.Tensor): Input tensor. | |
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies. | |
Returns: | |
torch.Tensor: Output tensor after applying attention and | |
feedforward layers. | |
""" | |
if adaln_input is not None: | |
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1) | |
x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2( | |
self.attention( | |
modulate(self.attention_norm1(x), scale_msa), | |
x_mask, | |
freqs_cis, | |
self.attention_y_norm(y), | |
y_mask, | |
) | |
) | |
x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2( | |
self.feed_forward( | |
modulate(self.ffn_norm1(x), scale_mlp), | |
) | |
) | |
else: | |
x = x + self.attention_norm2( | |
self.attention( | |
self.attention_norm1(x), | |
x_mask, | |
freqs_cis, | |
self.attention_y_norm(y), | |
y_mask, | |
) | |
) | |
x = x + self.ffn_norm2(self.feed_forward(self.ffn_norm1(x))) | |
return x | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of NextDiT. | |
""" | |
def __init__(self, hidden_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm( | |
hidden_size, | |
elementwise_affine=False, | |
eps=1e-6, | |
) | |
self.linear = nn.Linear( | |
hidden_size, | |
patch_size * patch_size * out_channels, | |
) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear( | |
min(hidden_size, 1024), | |
hidden_size, | |
), | |
) | |
def forward(self, x, c): | |
scale = self.adaLN_modulation(c) | |
x = modulate(self.norm_final(x), scale) | |
x = self.linear(x) | |
return x | |
class NextDiT(nn.Module): | |
""" | |
Diffusion model with a Transformer backbone. | |
""" | |
def __init__( | |
self, | |
patch_size: int = 2, | |
in_channels: int = 4, | |
dim: int = 4096, | |
n_layers: int = 32, | |
n_heads: int = 32, | |
n_kv_heads: Optional[int] = None, | |
multiple_of: int = 256, | |
ffn_dim_multiplier: Optional[float] = None, | |
norm_eps: float = 1e-5, | |
learn_sigma: bool = True, | |
qk_norm: bool = False, | |
cap_feat_dim: int = 5120, | |
scale_factor: float = 1.0, | |
) -> None: | |
super().__init__() | |
self.learn_sigma = learn_sigma | |
self.in_channels = in_channels | |
self.out_channels = in_channels * 2 if learn_sigma else in_channels | |
self.patch_size = patch_size | |
self.x_embedder = nn.Linear( | |
in_features=patch_size * patch_size * in_channels, | |
out_features=dim, | |
bias=True, | |
) | |
nn.init.constant_(self.x_embedder.bias, 0.0) | |
self.t_embedder = ParallelTimestepEmbedder(min(dim, 1024)) | |
self.cap_embedder = nn.Sequential( | |
nn.LayerNorm(cap_feat_dim), | |
nn.Linear( | |
cap_feat_dim, | |
min(dim, 1024), | |
bias=True, | |
), | |
) | |
self.layers = nn.ModuleList( | |
[ | |
TransformerBlock( | |
layer_id, | |
dim, | |
n_heads, | |
n_kv_heads, | |
multiple_of, | |
ffn_dim_multiplier, | |
norm_eps, | |
qk_norm, | |
cap_feat_dim, | |
) | |
for layer_id in range(n_layers) | |
] | |
) | |
self.final_layer = FinalLayer(dim, patch_size, self.out_channels) | |
assert (dim // n_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4" | |
self.freqs_cis = NextDiT.precompute_freqs_cis( | |
dim // n_heads, | |
384, | |
scale_factor=scale_factor, | |
) | |
self.dim = dim | |
self.n_heads = n_heads | |
self.scale_factor = scale_factor | |
self.pad_token = nn.Parameter(torch.empty(dim)) | |
nn.init.normal_(self.pad_token, std=0.02) | |
def unpatchify(self, x: torch.Tensor, img_size: List[Tuple[int, int]], return_tensor=False) -> List[torch.Tensor]: | |
""" | |
x: (N, T, patch_size**2 * C) | |
imgs: (N, H, W, C) | |
""" | |
pH = pW = self.patch_size | |
if return_tensor: | |
H, W = img_size[0] | |
B = x.size(0) | |
L = (H // pH) * (W // pW) | |
x = x[:, :L].view(B, H // pH, W // pW, pH, pW, self.out_channels) | |
x = x.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3) | |
return x | |
else: | |
imgs = [] | |
for i in range(x.size(0)): | |
H, W = img_size[i] | |
L = (H // pH) * (W // pW) | |
imgs.append( | |
x[i][:L] | |
.view(H // pH, W // pW, pH, pW, self.out_channels) | |
.permute(4, 0, 2, 1, 3) | |
.flatten(3, 4) | |
.flatten(1, 2) | |
) | |
return imgs | |
def patchify_and_embed( | |
self, x: List[torch.Tensor] | torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], torch.Tensor]: | |
self.freqs_cis = self.freqs_cis.to(x[0].device) | |
if isinstance(x, torch.Tensor): | |
pH = pW = self.patch_size | |
B, C, H, W = x.size() | |
x = x.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 1, 3, 5).flatten(3) | |
x = self.x_embedder(x) | |
x = x.flatten(1, 2) | |
mask = torch.ones(x.shape[0], x.shape[1], dtype=torch.int32, device=x.device) | |
return ( | |
x, | |
mask, | |
[(H, W)] * B, | |
self.freqs_cis[: H // pH, : W // pW].flatten(0, 1).unsqueeze(0), | |
) | |
else: | |
pH = pW = self.patch_size | |
x_embed = [] | |
freqs_cis = [] | |
img_size = [] | |
l_effective_seq_len = [] | |
for img in x: | |
C, H, W = img.size() | |
item_freqs_cis = self.freqs_cis[: H // pH, : W // pW] | |
freqs_cis.append(item_freqs_cis.flatten(0, 1)) | |
img_size.append((H, W)) | |
img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 0, 2, 4).flatten(2) | |
img = self.x_embedder(img) | |
img = img.flatten(0, 1) | |
l_effective_seq_len.append(len(img)) | |
x_embed.append(img) | |
max_seq_len = max(l_effective_seq_len) | |
mask = torch.zeros(len(x), max_seq_len, dtype=torch.int32, device=x[0].device) | |
padded_x_embed = [] | |
padded_freqs_cis = [] | |
for i, (item_embed, item_freqs_cis, item_seq_len) in enumerate( | |
zip(x_embed, freqs_cis, l_effective_seq_len) | |
): | |
item_embed = torch.cat( | |
[ | |
item_embed, | |
self.pad_token.view(1, -1).expand(max_seq_len - item_seq_len, -1), | |
], | |
dim=0, | |
) | |
item_freqs_cis = torch.cat( | |
[ | |
item_freqs_cis, | |
item_freqs_cis[-1:].expand(max_seq_len - item_seq_len, -1), | |
], | |
dim=0, | |
) | |
padded_x_embed.append(item_embed) | |
padded_freqs_cis.append(item_freqs_cis) | |
mask[i][:item_seq_len] = 1 | |
x_embed = torch.stack(padded_x_embed, dim=0) | |
freqs_cis = torch.stack(padded_freqs_cis, dim=0) | |
return x_embed, mask, img_size, freqs_cis | |
def forward(self, x, t, cap_feats, cap_mask): | |
""" | |
Forward pass of NextDiT. | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
x_is_tensor = isinstance(x, torch.Tensor) | |
x, mask, img_size, freqs_cis = self.patchify_and_embed(x) | |
freqs_cis = freqs_cis.to(x.device) | |
t = self.t_embedder(t) # (N, D) | |
cap_mask_float = cap_mask.float().unsqueeze(-1) | |
cap_feats_pool = (cap_feats * cap_mask_float).sum(dim=1) / cap_mask_float.sum(dim=1) | |
cap_feats_pool = cap_feats_pool.to(cap_feats) | |
cap_emb = self.cap_embedder(cap_feats_pool) | |
adaln_input = t + cap_emb | |
cap_mask = cap_mask.bool() | |
for layer in self.layers: | |
x = layer(x, mask, freqs_cis, cap_feats, cap_mask, adaln_input=adaln_input) | |
x = self.final_layer(x, adaln_input) | |
x = self.unpatchify(x, img_size, return_tensor=x_is_tensor) | |
if self.learn_sigma: | |
if x_is_tensor: | |
x, _ = x.chunk(2, dim=1) | |
else: | |
x = [_.chunk(2, dim=0)[0] for _ in x] | |
return x | |
def forward_with_cfg( | |
self, | |
x, | |
t, | |
cap_feats, | |
cap_mask, | |
cfg_scale, | |
scale_factor=1.0, | |
scale_watershed=1.0, | |
base_seqlen: Optional[int] = None, | |
proportional_attn: bool = False, | |
): | |
""" | |
Forward pass of NextDiT, but also batches the unconditional forward pass | |
for classifier-free guidance. | |
""" | |
# # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb | |
self.freqs_cis = NextDiT.precompute_freqs_cis( | |
self.dim // self.n_heads, | |
384, | |
scale_factor=scale_factor, | |
scale_watershed=scale_watershed, | |
timestep=t[0].item(), | |
) | |
if proportional_attn: | |
assert base_seqlen is not None | |
for layer in self.layers: | |
layer.attention.base_seqlen = base_seqlen | |
layer.attention.proportional_attn = proportional_attn | |
else: | |
for layer in self.layers: | |
layer.attention.base_seqlen = None | |
layer.attention.proportional_attn = proportional_attn | |
half = x[: len(x) // 2] | |
combined = torch.cat([half, half], dim=0) | |
model_out = self(combined, t, cap_feats, cap_mask) | |
# For exact reproducibility reasons, we apply classifier-free guidance on only | |
# three channels by default. The standard approach to cfg applies it to all channels. | |
# This can be done by uncommenting the following line and commenting-out the line following that. | |
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:] | |
eps, rest = model_out[:, :3], model_out[:, 3:] | |
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) | |
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) | |
eps = torch.cat([half_eps, half_eps], dim=0) | |
return torch.cat([eps, rest], dim=1) | |
def precompute_freqs_cis( | |
dim: int, | |
end: int, | |
theta: float = 10000.0, | |
scale_factor: float = 1.0, | |
scale_watershed: float = 1.0, | |
timestep: float = 1.0, | |
): | |
""" | |
Precompute the frequency tensor for complex exponentials (cis) with | |
given dimensions. | |
This function calculates a frequency tensor with complex exponentials | |
using the given dimension 'dim' and the end index 'end'. The 'theta' | |
parameter scales the frequencies. The returned tensor contains complex | |
values in complex64 data type. | |
Args: | |
dim (int): Dimension of the frequency tensor. | |
end (int): End index for precomputing frequencies. | |
theta (float, optional): Scaling factor for frequency computation. | |
Defaults to 10000.0. | |
Returns: | |
torch.Tensor: Precomputed frequency tensor with complex | |
exponentials. | |
""" | |
if timestep < scale_watershed: | |
linear_factor = scale_factor | |
ntk_factor = 1.0 | |
else: | |
linear_factor = 1.0 | |
ntk_factor = scale_factor | |
theta = theta * ntk_factor | |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float().cuda() / dim)) / linear_factor | |
timestep = torch.arange(end, device=freqs.device, dtype=torch.float) # type: ignore | |
freqs = torch.outer(timestep, freqs).float() # type: ignore | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 | |
freqs_cis_h = freqs_cis.view(end, 1, dim // 4, 1).repeat(1, end, 1, 1) | |
freqs_cis_w = freqs_cis.view(1, end, dim // 4, 1).repeat(end, 1, 1, 1) | |
freqs_cis = torch.cat([freqs_cis_h, freqs_cis_w], dim=-1).flatten(2) | |
return freqs_cis | |
def parameter_count(self) -> int: | |
total_params = 0 | |
def _recursive_count_params(module): | |
nonlocal total_params | |
for param in module.parameters(recurse=False): | |
total_params += param.numel() | |
for submodule in module.children(): | |
_recursive_count_params(submodule) | |
_recursive_count_params(self) | |
return total_params | |
def get_fsdp_wrap_module_list(self) -> List[nn.Module]: | |
return list(self.layers) | |
############################################################################# | |
# NextDiT Configs # | |
############################################################################# | |
def NextDiT_2B_patch2(**kwargs): | |
return NextDiT(patch_size=2, dim=2304, n_layers=24, n_heads=32, **kwargs) | |
def NextDiT_2B_GQA_patch2(**kwargs): | |
return NextDiT(patch_size=2, dim=2304, n_layers=24, n_heads=32, n_kv_heads=8, **kwargs) | |