PommesPeter's picture
Update models/model.py
fbed413 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import math
from typing import List, Optional, Tuple
from flash_attn import flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from .components import RMSNorm
def modulate(x, scale):
return x * (1 + scale.unsqueeze(1))
#############################################################################
# Embedding Layers for Timesteps and Class Labels #
#############################################################################
class ParallelTimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(
frequency_embedding_size,
hidden_size,
bias=True,
),
nn.SiLU(),
nn.Linear(
hidden_size,
hidden_size,
bias=True,
),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
device=t.device
)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq.to(self.mlp[0].weight.dtype))
return t_emb
class ParallelLabelEmbedder(nn.Module):
r"""Embeds class labels into vector representations. Also handles label
dropout for classifier-free guidance.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = int(dropout_prob > 0)
self.embedding_table = nn.Embedding(
num_classes + use_cfg_embedding
)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
drop_ids = drop_ids.cuda()
drop_ids = drop_ids.to(labels.device)
else:
drop_ids = force_drop_ids == 1
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels, train, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (train and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
#############################################################################
# Core NextDiT Model #
#############################################################################
class Attention(nn.Module):
"""Multi-head attention module."""
def __init__(
self,
dim: int,
n_heads: int,
n_kv_heads: Optional[int],
qk_norm: bool,
y_dim: int,
):
"""
Initialize the Attention module.
Args:
dim (int): Number of input dimensions.
n_heads (int): Number of heads.
n_kv_heads (Optional[int]): Number of kv heads, if using GQA.
"""
super().__init__()
self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads
self.n_heads = n_heads
self.n_kv_heads = self.n_kv_heads
self.n_rep = self.n_heads // self.n_kv_heads
self.head_dim = dim // n_heads
self.wq = nn.Linear(
dim,
n_heads * self.head_dim,
bias=False,
)
self.wk = nn.Linear(
dim,
self.n_kv_heads * self.head_dim,
bias=False,
)
self.wv = nn.Linear(
dim,
self.n_kv_heads * self.head_dim,
bias=False,
)
if y_dim > 0:
self.wk_y = nn.Linear(
y_dim,
self.n_kv_heads * self.head_dim,
bias=False,
)
self.wv_y = nn.Linear(
y_dim,
self.n_kv_heads * self.head_dim,
bias=False,
)
self.gate = nn.Parameter(torch.zeros([self.n_heads]))
self.wo = nn.Linear(
n_heads * self.head_dim,
dim,
bias=False,
)
if qk_norm:
self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim)
self.k_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim)
if y_dim > 0:
self.ky_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim)
else:
self.ky_norm = nn.Identity()
else:
self.q_norm = self.k_norm = nn.Identity()
self.ky_norm = nn.Identity()
# for proportional attention computation
self.base_seqlen = None
self.proportional_attn = False
@staticmethod
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
"""
Reshape frequency tensor for broadcasting it with another tensor.
This function reshapes the frequency tensor to have the same shape as
the target tensor 'x' for the purpose of broadcasting the frequency
tensor during element-wise operations.
Args:
freqs_cis (torch.Tensor): Frequency tensor to be reshaped.
x (torch.Tensor): Target tensor for broadcasting compatibility.
Returns:
torch.Tensor: Reshaped frequency tensor.
Raises:
AssertionError: If the frequency tensor doesn't match the expected
shape.
AssertionError: If the target tensor 'x' doesn't have the expected
number of dimensions.
"""
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
@staticmethod
def apply_rotary_emb(
x_in: torch.Tensor,
freqs_cis: torch.Tensor,
) -> torch.Tensor:
"""
Apply rotary embeddings to input tensors using the given frequency
tensor.
This function applies rotary embeddings to the given query 'xq' and
key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The
input tensors are reshaped as complex numbers, and the frequency tensor
is reshaped for broadcasting compatibility. The resulting tensors
contain rotary embeddings and are returned as real tensors.
Args:
x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings.
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex
exponentials.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor
and key tensor with rotary embeddings.
"""
with torch.cuda.amp.autocast(enabled=False):
x = torch.view_as_complex(x_in.float().reshape(*x_in.shape[:-1], -1, 2))
freqs_cis = freqs_cis.unsqueeze(2)
x_out = torch.view_as_real(x * freqs_cis).flatten(3)
return x_out.type_as(x_in)
# copied from huggingface modeling_llama.py
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
indices_k,
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
indices_k,
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.n_heads, head_dim),
indices_k,
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
freqs_cis: torch.Tensor,
y: torch.Tensor,
y_mask: torch.Tensor,
) -> torch.Tensor:
"""
Args:
x:
x_mask:
freqs_cis:
y:
y_mask:
Returns:
"""
bsz, seqlen, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
dtype = xq.dtype
xq = self.q_norm(xq)
xk = self.k_norm(xk)
xq = xq.view(bsz, seqlen, self.n_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
xq = Attention.apply_rotary_emb(xq, freqs_cis=freqs_cis)
xk = Attention.apply_rotary_emb(xk, freqs_cis=freqs_cis)
xq, xk = xq.to(dtype), xk.to(dtype)
if self.proportional_attn:
softmax_scale = math.sqrt(math.log(seqlen, self.base_seqlen) / self.head_dim)
else:
softmax_scale = math.sqrt(1 / self.head_dim)
if dtype in [torch.float16, torch.bfloat16]:
# begin var_len flash attn
(
query_states,
key_states,
value_states,
indices_q,
cu_seq_lens,
max_seq_lens,
) = self._upad_input(xq, xk, xv, x_mask, seqlen)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=0.0,
causal=False,
softmax_scale=softmax_scale,
)
output = pad_input(attn_output_unpad, indices_q, bsz, seqlen)
# end var_len_flash_attn
else:
output = (
F.scaled_dot_product_attention(
xq.permute(0, 2, 1, 3),
xk.permute(0, 2, 1, 3),
xv.permute(0, 2, 1, 3),
attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_heads, seqlen, -1),
scale=softmax_scale,
)
.permute(0, 2, 1, 3)
.to(dtype)
)
if hasattr(self, "wk_y"):
yk = self.ky_norm(self.wk_y(y)).view(bsz, -1, self.n_kv_heads, self.head_dim)
yv = self.wv_y(y).view(bsz, -1, self.n_kv_heads, self.head_dim)
n_rep = self.n_heads // self.n_kv_heads
if n_rep >= 1:
yk = yk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
yv = yv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
output_y = F.scaled_dot_product_attention(
xq.permute(0, 2, 1, 3),
yk.permute(0, 2, 1, 3),
yv.permute(0, 2, 1, 3),
y_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_heads, seqlen, -1),
).permute(0, 2, 1, 3)
output_y = output_y * self.gate.tanh().view(1, 1, -1, 1)
output = output + output_y
output = output.flatten(-2)
return self.wo(output)
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
ffn_dim_multiplier: Optional[float],
):
"""
Initialize the FeedForward module.
Args:
dim (int): Input dimension.
hidden_dim (int): Hidden dimension of the feedforward layer.
multiple_of (int): Value to ensure hidden dimension is a multiple
of this value.
ffn_dim_multiplier (float, optional): Custom multiplier for hidden
dimension. Defaults to None.
Attributes:
w1 (nn.Linear): Linear transformation for the first
layer.
w2 (nn.Linear): Linear transformation for the second layer.
w3 (nn.Linear): Linear transformation for the third
layer.
"""
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = nn.Linear(
dim,
hidden_dim,
bias=False,
)
self.w2 = nn.Linear(
hidden_dim,
dim,
bias=False,
)
self.w3 = nn.Linear(
dim,
hidden_dim,
bias=False,
)
# @torch.compile
def _forward_silu_gating(self, x1, x3):
return F.silu(x1) * x3
def forward(self, x):
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
class TransformerBlock(nn.Module):
def __init__(
self,
layer_id: int,
dim: int,
n_heads: int,
n_kv_heads: int,
multiple_of: int,
ffn_dim_multiplier: float,
norm_eps: float,
qk_norm: bool,
y_dim: int,
) -> None:
"""
Initialize a TransformerBlock.
Args:
layer_id (int): Identifier for the layer.
dim (int): Embedding dimension of the input features.
n_heads (int): Number of attention heads.
n_kv_heads (Optional[int]): Number of attention heads in key and
value features (if using GQA), or set to None for the same as
query.
multiple_of (int):
ffn_dim_multiplier (float):
norm_eps (float):
Attributes:
n_heads (int): Number of attention heads.
dim (int): Dimension size of the model.
head_dim (int): Dimension size of each attention head.
attention (Attention): Attention module.
feed_forward (FeedForward): FeedForward module.
layer_id (int): Identifier for the layer.
attention_norm (RMSNorm): Layer normalization for attention output.
ffn_norm (RMSNorm): Layer normalization for feedforward output.
"""
super().__init__()
self.dim = dim
self.head_dim = dim // n_heads
self.attention = Attention(dim, n_heads, n_kv_heads, qk_norm, y_dim)
self.feed_forward = FeedForward(
dim=dim,
hidden_dim=4 * dim,
multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier,
)
self.layer_id = layer_id
self.attention_norm1 = RMSNorm(dim, eps=norm_eps)
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
self.attention_norm2 = RMSNorm(dim, eps=norm_eps)
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(
min(dim, 1024),
4 * dim,
bias=True,
),
)
self.attention_y_norm = RMSNorm(y_dim, eps=norm_eps)
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
freqs_cis: torch.Tensor,
y: torch.Tensor,
y_mask: torch.Tensor,
adaln_input: Optional[torch.Tensor] = None,
):
"""
Perform a forward pass through the TransformerBlock.
Args:
x (torch.Tensor): Input tensor.
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
Returns:
torch.Tensor: Output tensor after applying attention and
feedforward layers.
"""
if adaln_input is not None:
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1)
x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2(
self.attention(
modulate(self.attention_norm1(x), scale_msa),
x_mask,
freqs_cis,
self.attention_y_norm(y),
y_mask,
)
)
x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
self.feed_forward(
modulate(self.ffn_norm1(x), scale_mlp),
)
)
else:
x = x + self.attention_norm2(
self.attention(
self.attention_norm1(x),
x_mask,
freqs_cis,
self.attention_y_norm(y),
y_mask,
)
)
x = x + self.ffn_norm2(self.feed_forward(self.ffn_norm1(x)))
return x
class FinalLayer(nn.Module):
"""
The final layer of NextDiT.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(
hidden_size,
elementwise_affine=False,
eps=1e-6,
)
self.linear = nn.Linear(
hidden_size,
patch_size * patch_size * out_channels,
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(
min(hidden_size, 1024),
hidden_size,
),
)
def forward(self, x, c):
scale = self.adaLN_modulation(c)
x = modulate(self.norm_final(x), scale)
x = self.linear(x)
return x
class NextDiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
patch_size: int = 2,
in_channels: int = 4,
dim: int = 4096,
n_layers: int = 32,
n_heads: int = 32,
n_kv_heads: Optional[int] = None,
multiple_of: int = 256,
ffn_dim_multiplier: Optional[float] = None,
norm_eps: float = 1e-5,
learn_sigma: bool = True,
qk_norm: bool = False,
cap_feat_dim: int = 5120,
scale_factor: float = 1.0,
) -> None:
super().__init__()
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.patch_size = patch_size
self.x_embedder = nn.Linear(
in_features=patch_size * patch_size * in_channels,
out_features=dim,
bias=True,
)
nn.init.constant_(self.x_embedder.bias, 0.0)
self.t_embedder = ParallelTimestepEmbedder(min(dim, 1024))
self.cap_embedder = nn.Sequential(
nn.LayerNorm(cap_feat_dim),
nn.Linear(
cap_feat_dim,
min(dim, 1024),
bias=True,
),
)
self.layers = nn.ModuleList(
[
TransformerBlock(
layer_id,
dim,
n_heads,
n_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
qk_norm,
cap_feat_dim,
)
for layer_id in range(n_layers)
]
)
self.final_layer = FinalLayer(dim, patch_size, self.out_channels)
assert (dim // n_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4"
self.freqs_cis = NextDiT.precompute_freqs_cis(
dim // n_heads,
384,
scale_factor=scale_factor,
)
self.dim = dim
self.n_heads = n_heads
self.scale_factor = scale_factor
self.pad_token = nn.Parameter(torch.empty(dim))
nn.init.normal_(self.pad_token, std=0.02)
def unpatchify(self, x: torch.Tensor, img_size: List[Tuple[int, int]], return_tensor=False) -> List[torch.Tensor]:
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
pH = pW = self.patch_size
if return_tensor:
H, W = img_size[0]
B = x.size(0)
L = (H // pH) * (W // pW)
x = x[:, :L].view(B, H // pH, W // pW, pH, pW, self.out_channels)
x = x.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3)
return x
else:
imgs = []
for i in range(x.size(0)):
H, W = img_size[i]
L = (H // pH) * (W // pW)
imgs.append(
x[i][:L]
.view(H // pH, W // pW, pH, pW, self.out_channels)
.permute(4, 0, 2, 1, 3)
.flatten(3, 4)
.flatten(1, 2)
)
return imgs
def patchify_and_embed(
self, x: List[torch.Tensor] | torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], torch.Tensor]:
self.freqs_cis = self.freqs_cis.to(x[0].device)
if isinstance(x, torch.Tensor):
pH = pW = self.patch_size
B, C, H, W = x.size()
x = x.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 1, 3, 5).flatten(3)
x = self.x_embedder(x)
x = x.flatten(1, 2)
mask = torch.ones(x.shape[0], x.shape[1], dtype=torch.int32, device=x.device)
return (
x,
mask,
[(H, W)] * B,
self.freqs_cis[: H // pH, : W // pW].flatten(0, 1).unsqueeze(0),
)
else:
pH = pW = self.patch_size
x_embed = []
freqs_cis = []
img_size = []
l_effective_seq_len = []
for img in x:
C, H, W = img.size()
item_freqs_cis = self.freqs_cis[: H // pH, : W // pW]
freqs_cis.append(item_freqs_cis.flatten(0, 1))
img_size.append((H, W))
img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 0, 2, 4).flatten(2)
img = self.x_embedder(img)
img = img.flatten(0, 1)
l_effective_seq_len.append(len(img))
x_embed.append(img)
max_seq_len = max(l_effective_seq_len)
mask = torch.zeros(len(x), max_seq_len, dtype=torch.int32, device=x[0].device)
padded_x_embed = []
padded_freqs_cis = []
for i, (item_embed, item_freqs_cis, item_seq_len) in enumerate(
zip(x_embed, freqs_cis, l_effective_seq_len)
):
item_embed = torch.cat(
[
item_embed,
self.pad_token.view(1, -1).expand(max_seq_len - item_seq_len, -1),
],
dim=0,
)
item_freqs_cis = torch.cat(
[
item_freqs_cis,
item_freqs_cis[-1:].expand(max_seq_len - item_seq_len, -1),
],
dim=0,
)
padded_x_embed.append(item_embed)
padded_freqs_cis.append(item_freqs_cis)
mask[i][:item_seq_len] = 1
x_embed = torch.stack(padded_x_embed, dim=0)
freqs_cis = torch.stack(padded_freqs_cis, dim=0)
return x_embed, mask, img_size, freqs_cis
def forward(self, x, t, cap_feats, cap_mask):
"""
Forward pass of NextDiT.
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
x_is_tensor = isinstance(x, torch.Tensor)
x, mask, img_size, freqs_cis = self.patchify_and_embed(x)
freqs_cis = freqs_cis.to(x.device)
t = self.t_embedder(t) # (N, D)
cap_mask_float = cap_mask.float().unsqueeze(-1)
cap_feats_pool = (cap_feats * cap_mask_float).sum(dim=1) / cap_mask_float.sum(dim=1)
cap_feats_pool = cap_feats_pool.to(cap_feats)
cap_emb = self.cap_embedder(cap_feats_pool)
adaln_input = t + cap_emb
cap_mask = cap_mask.bool()
for layer in self.layers:
x = layer(x, mask, freqs_cis, cap_feats, cap_mask, adaln_input=adaln_input)
x = self.final_layer(x, adaln_input)
x = self.unpatchify(x, img_size, return_tensor=x_is_tensor)
if self.learn_sigma:
if x_is_tensor:
x, _ = x.chunk(2, dim=1)
else:
x = [_.chunk(2, dim=0)[0] for _ in x]
return x
def forward_with_cfg(
self,
x,
t,
cap_feats,
cap_mask,
cfg_scale,
scale_factor=1.0,
scale_watershed=1.0,
base_seqlen: Optional[int] = None,
proportional_attn: bool = False,
):
"""
Forward pass of NextDiT, but also batches the unconditional forward pass
for classifier-free guidance.
"""
# # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
self.freqs_cis = NextDiT.precompute_freqs_cis(
self.dim // self.n_heads,
384,
scale_factor=scale_factor,
scale_watershed=scale_watershed,
timestep=t[0].item(),
)
if proportional_attn:
assert base_seqlen is not None
for layer in self.layers:
layer.attention.base_seqlen = base_seqlen
layer.attention.proportional_attn = proportional_attn
else:
for layer in self.layers:
layer.attention.base_seqlen = None
layer.attention.proportional_attn = proportional_attn
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
model_out = self(combined, t, cap_feats, cap_mask)
# For exact reproducibility reasons, we apply classifier-free guidance on only
# three channels by default. The standard approach to cfg applies it to all channels.
# This can be done by uncommenting the following line and commenting-out the line following that.
# eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:]
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
@staticmethod
def precompute_freqs_cis(
dim: int,
end: int,
theta: float = 10000.0,
scale_factor: float = 1.0,
scale_watershed: float = 1.0,
timestep: float = 1.0,
):
"""
Precompute the frequency tensor for complex exponentials (cis) with
given dimensions.
This function calculates a frequency tensor with complex exponentials
using the given dimension 'dim' and the end index 'end'. The 'theta'
parameter scales the frequencies. The returned tensor contains complex
values in complex64 data type.
Args:
dim (int): Dimension of the frequency tensor.
end (int): End index for precomputing frequencies.
theta (float, optional): Scaling factor for frequency computation.
Defaults to 10000.0.
Returns:
torch.Tensor: Precomputed frequency tensor with complex
exponentials.
"""
if timestep < scale_watershed:
linear_factor = scale_factor
ntk_factor = 1.0
else:
linear_factor = 1.0
ntk_factor = scale_factor
theta = theta * ntk_factor
freqs = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float().cuda() / dim)) / linear_factor
timestep = torch.arange(end, device=freqs.device, dtype=torch.float) # type: ignore
freqs = torch.outer(timestep, freqs).float() # type: ignore
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
freqs_cis_h = freqs_cis.view(end, 1, dim // 4, 1).repeat(1, end, 1, 1)
freqs_cis_w = freqs_cis.view(1, end, dim // 4, 1).repeat(end, 1, 1, 1)
freqs_cis = torch.cat([freqs_cis_h, freqs_cis_w], dim=-1).flatten(2)
return freqs_cis
def parameter_count(self) -> int:
total_params = 0
def _recursive_count_params(module):
nonlocal total_params
for param in module.parameters(recurse=False):
total_params += param.numel()
for submodule in module.children():
_recursive_count_params(submodule)
_recursive_count_params(self)
return total_params
def get_fsdp_wrap_module_list(self) -> List[nn.Module]:
return list(self.layers)
#############################################################################
# NextDiT Configs #
#############################################################################
def NextDiT_2B_patch2(**kwargs):
return NextDiT(patch_size=2, dim=2304, n_layers=24, n_heads=32, **kwargs)
def NextDiT_2B_GQA_patch2(**kwargs):
return NextDiT(patch_size=2, dim=2304, n_layers=24, n_heads=32, n_kv_heads=8, **kwargs)