import os os.system("mkdir -p ./checkpoints") os.system("huggingface-cli download --resume-download Alpha-VLLM/Lumina-Next-T2I --local-dir ./checkpoints --local-dir-use-symlinks False") os.system("pip install flash-attn --no-build-isolation") import argparse import builtins import json import multiprocessing as mp import random import socket import spaces import traceback import fairscale.nn.model_parallel.initialize as fs_init import gradio as gr import numpy as np import torch import torch.distributed as dist from torchvision.transforms.functional import to_pil_image import models from PIL import Image from lumina_t2i.transport import create_transport, Sampler print(f"Is CUDA available: {torch.cuda.is_available()}") print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") description = """ # Lumina Next Text-to-Image Lumina-Next-T2I is a 2B Next-DiT model with 2B text encoder. Demo current model: `Lumina-Next-T2I` ### Due to the high volume of access, we have temporarily disabled the resolution extrapolation functionality. ### Additionally, we offer three alternative links for Lumina-T2X access. Try to visit other demo sites. [[demo1](http://106.14.2.150:10022/)] [[demo2](http://106.14.2.150:10023/)] """ examples = [ ["👽🤖👹👻"], ["孤舟蓑笠翁"], ["两只黄鹂鸣翠柳"], ["大漠孤烟直,长河落日圆"], ["秋风起兮白云飞,草木黄落兮雁南归"], ["도쿄 타워, 최고 품질의 우키요에, 에도 시대"], ["味噌ラーメン, 最高品質の浮世絵、江戸時代。"], ["東京タワー、最高品質の浮世絵、江戸時代。"], ["Astronaut on Mars During sunset"], ["Tour de Tokyo, estampes ukiyo-e de la plus haute qualité, période Edo"], ["🐔 playing 🏀"], ["☃️ with 🌹 in the ❄️"], ["🐶 wearing 😎 flying on 🌈 "], ["A small 🍎 and 🍊 with 😁 emoji in the Sahara desert"], ["Токийская башня, лучшие укиё-э, период Эдо"], ["Tokio-Turm, hochwertigste Ukiyo-e, Edo-Zeit"], ["A scared cute rabbit in Happy Tree Friends style and punk vibe."], # noqa ["A humanoid eagle soldier of the First World War."], # noqa ["A cute Christmas mockup on an old wooden industrial desk table with Christmas decorations and bokeh lights in the background."], ["A front view of a romantic flower shop in France filled with various blooming flowers including lavenders and roses."], ["An old man, portrayed as a retro superhero, stands in the streets of New York City at night"], ["many trees are surrounded by a lake in autumn colors, in the style of nature-inspired imagery, havencore, brightly colored, dark white and dark orange, bright primary colors, environmental activism, forestpunk --ar 64:51"], ["A fluffy mouse holding a watermelon, in a magical and colorful setting, illustrated in the style of Hayao Miyazaki anime by Studio Ghibli."], ["Inka warrior with a war make up, medium shot, natural light, Award winning wildlife photography, hyperrealistic, 8k resolution, --ar 9:16"], ["Character of lion in style of saiyan, mafia, gangsta, citylights background, Hyper detailed, hyper realistic, unreal engine ue5, cgi 3d, cinematic shot, 8k"], ["In the sky above, a giant, whimsical cloud shaped like the 😊 emoji casts a soft, golden light over the scene"], ["Cyberpunk eagle, neon ambiance, abstract black oil, gear mecha, detailed acrylic, grunge, intricate complexity, rendered in unreal engine 5, photorealistic, 8k"], ["close-up photo of a beautiful red rose breaking through a cube made of ice , splintered cracked ice surface, frosted colors, blood dripping from rose, melting ice, Valentine’s Day vibes, cinematic, sharp focus, intricate, cinematic, dramatic light"], ["3D cartoon Fox Head with Human Body, Wearing Iridescent Holographic Liquid Texture & Translucent Material Sun Protective Shirt, Boss Feel, Nike or Addidas Sun Protective Shirt, WitchPunk, Y2K Style, Green and blue, Blue, Metallic Feel, Strong Reflection, plain background, no background, pure single color background, Digital Fashion, Surreal Futurism, Supreme Kong NFT Artwork Style, disney style, headshot photography for portrait studio shoot, fashion editorial aesthetic, high resolution in the style of HAPE PRIME NFT, NFT 3D IP Feel, Bored Ape Yacht Club NFT project Feel, high detail, fine luster, 3D render, oc render, best quality, 8K, bright, front lighting, Face Shot, fine luster, ultra detailed"], ], class ModelFailure: pass # Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt def encode_prompt( prompt_batch, text_encoder, tokenizer, proportion_empty_prompts, is_train=True ): captions = [] for caption in prompt_batch: if random.random() < proportion_empty_prompts: captions.append("") elif isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) with torch.no_grad(): text_inputs = tokenizer( captions, padding=True, pad_to_multiple_of=8, max_length=256, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids prompt_masks = text_inputs.attention_mask prompt_embeds = text_encoder( input_ids=text_input_ids.cuda(), attention_mask=prompt_masks.cuda(), output_hidden_states=True, ).hidden_states[-2] return prompt_embeds, prompt_masks @spaces.GPU @torch.no_grad() def model_main(args, master_port, rank, request_queue, response_queue, mp_barrier): # import here to avoid huggingface Tokenizer parallelism warnings from diffusers.models import AutoencoderKL from transformers import AutoModelForCausalLM, AutoTokenizer # override the default print function since the delay can be large for child process original_print = builtins.print # Redefine the print function with flush=True by default def print(*args, **kwargs): kwargs.setdefault("flush", True) original_print(*args, **kwargs) # Override the built-in print with the new version builtins.print = print os.environ["MASTER_PORT"] = str(master_port) os.environ["MASTER_ADDR"] = "127.0.0.1" os.environ["RANK"] = str(rank) os.environ["WORLD_SIZE"] = str(args.num_gpus) dist.init_process_group("nccl") # set up fairscale environment because some methods of the Lumina model need it, # though for single-GPU inference fairscale actually has no effect fs_init.initialize_model_parallel(args.num_gpus) torch.cuda.set_device(rank) train_args = torch.load(os.path.join(args.ckpt, "model_args.pth")) if dist.get_rank() == 0: print("Loaded model arguments:", json.dumps(train_args.__dict__, indent=2)) if dist.get_rank() == 0: print(f"Creating lm: Gemma-2B") dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[ args.precision ] text_encoder = ( AutoModelForCausalLM.from_pretrained( "google/gemma-2b", torch_dtype=dtype, device_map="cuda" ) .get_decoder() .eval() ) cap_feat_dim = text_encoder.config.hidden_size if args.num_gpus > 1: raise NotImplementedError("Inference with >1 GPUs not yet supported") tokenizer = AutoTokenizer.from_pretrained( "google/gemma-2b", add_bos_token=True, add_eos_token=True ) tokenizer.padding_side = "right" if dist.get_rank() == 0: print(f"Creating vae: sdxl-vae") vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", torch_dtype=torch.float32, ).cuda() if dist.get_rank() == 0: print(f"Creating DiT: Next-DiT") # latent_size = train_args.image_size // 8 model = models.__dict__["DiT_Llama_2B_patch2"]( qk_norm=train_args.qk_norm, cap_feat_dim=cap_feat_dim, ) model.eval().to("cuda", dtype=dtype) assert train_args.model_parallel_size == args.num_gpus if args.ema: print("Loading ema model.") ckpt = torch.load( os.path.join( args.ckpt, f"consolidated{'_ema' if args.ema else ''}.{rank:02d}-of-{args.num_gpus:02d}.pth", ), map_location="cpu", ) model.load_state_dict(ckpt, strict=True) mp_barrier.wait() with torch.autocast("cuda", dtype): while True: ( cap, resolution, num_sampling_steps, cfg_scale, solver, t_shift, seed, ntk_scaling, proportional_attn, ) = request_queue.get() print( "> params:", cap, resolution, num_sampling_steps, cfg_scale, solver, t_shift, seed, ntk_scaling, proportional_attn, ) try: # begin sampler transport = create_transport( args.path_type, args.prediction, args.loss_weight, args.train_eps, args.sample_eps, ) sampler = Sampler(transport) if args.sampler_mode == "ODE": if args.likelihood: # assert args.cfg_scale == 1, "Likelihood is incompatible with guidance" # todo sample_fn = sampler.sample_ode_likelihood( sampling_method=solver, num_steps=num_sampling_steps, atol=args.atol, rtol=args.rtol, ) else: sample_fn = sampler.sample_ode( sampling_method=solver, num_steps=num_sampling_steps, atol=args.atol, rtol=args.rtol, reverse=args.reverse, time_shifting_factor=t_shift, ) elif args.sampler_mode == "SDE": sample_fn = sampler.sample_sde( sampling_method=solver, diffusion_form=args.diffusion_form, diffusion_norm=args.diffusion_norm, last_step=args.last_step, last_step_size=args.last_step_size, num_steps=num_sampling_steps, ) # end sampler resolution = resolution.split(" ")[-1] w, h = resolution.split("x") w, h = int(w), int(h) latent_w, latent_h = w // 8, h // 8 if int(seed) != 0: torch.random.manual_seed(int(seed)) z = torch.randn([1, 4, latent_h, latent_w], device="cuda").to(dtype) z = z.repeat(2, 1, 1, 1) with torch.no_grad(): cap_feats, cap_mask = encode_prompt( [cap] + [""], text_encoder, tokenizer, 0.0 ) cap_mask = cap_mask.to(cap_feats.device) train_res = 1024 res_cat = (w * h) ** 0.5 print(f"res_cat: {res_cat}") max_seq_len = (res_cat // 16) ** 2 + (res_cat // 16) * 2 print(f"max_seq_len: {max_seq_len}") rope_scaling_factor = 1.0 ntk_factor = max_seq_len / (train_res // 16) ** 2 print(f"ntk_factor: {ntk_factor}") model_kwargs = dict( cap_feats=cap_feats, cap_mask=cap_mask, cfg_scale=cfg_scale, rope_scaling_factor=rope_scaling_factor, ntk_factor=ntk_factor, ) if dist.get_rank() == 0: print(f"caption: {cap}") print(f"num_sampling_steps: {num_sampling_steps}") print(f"cfg_scale: {cfg_scale}") with torch.cuda.amp.autocast(dtype=torch.bfloat16): print("> [debug] start sample") samples = sample_fn(z, model.forward_with_cfg, **model_kwargs)[-1] samples = samples[:1] factor = 0.18215 if train_args.vae != "sdxl" else 0.13025 print(f"vae factor: {factor}") samples = vae.decode(samples / factor).sample samples = (samples + 1.0) / 2.0 samples.clamp_(0.0, 1.0) img = to_pil_image(samples[0].float()) if response_queue is not None: response_queue.put(img) except Exception: print(traceback.format_exc()) response_queue.put(ModelFailure()) def none_or_str(value): if value == "None": return None return value def parse_transport_args(parser): group = parser.add_argument_group("Transport arguments") group.add_argument( "--path-type", type=str, default="Linear", choices=["Linear", "GVP", "VP"], help="the type of path for transport: 'Linear', 'GVP' (Geodesic Vector Pursuit), or 'VP' (Vector Pursuit).", ) group.add_argument( "--prediction", type=str, default="velocity", choices=["velocity", "score", "noise"], help="the prediction model for the transport dynamics.", ) group.add_argument( "--loss-weight", type=none_or_str, default=None, choices=[None, "velocity", "likelihood"], help="the weighting of different components in the loss function, can be 'velocity' for dynamic modeling, 'likelihood' for statistical consistency, or None for no weighting.", ) group.add_argument( "--sample-eps", type=float, help="sampling in the transport model." ) group.add_argument( "--train-eps", type=float, help="training to stabilize the learning process." ) def parse_ode_args(parser): group = parser.add_argument_group("ODE arguments") group.add_argument( "--atol", type=float, default=1e-6, help="Absolute tolerance for the ODE solver.", ) group.add_argument( "--rtol", type=float, default=1e-3, help="Relative tolerance for the ODE solver.", ) group.add_argument( "--reverse", action="store_true", help="run the ODE solver in reverse." ) group.add_argument( "--likelihood", action="store_true", help="Enable calculation of likelihood during the ODE solving process.", ) def parse_sde_args(parser): group = parser.add_argument_group("SDE arguments") group.add_argument( "--sampling-method", type=str, default="Euler", choices=["Euler", "Heun"], help="the numerical method used for sampling the stochastic differential equation: 'Euler' for simplicity or 'Heun' for improved accuracy.", ) group.add_argument( "--diffusion-form", type=str, default="sigma", choices=[ "constant", "SBDM", "sigma", "linear", "decreasing", "increasing-decreasing", ], help="form of diffusion coefficient in the SDE", ) group.add_argument( "--diffusion-norm", type=float, default=1.0, help="Normalizes the diffusion coefficient, affecting the scale of the stochastic component.", ) group.add_argument( "--last-step", type=none_or_str, default="Mean", choices=[None, "Mean", "Tweedie", "Euler"], help="form of last step taken in the SDE", ) group.add_argument( "--last-step-size", type=float, default=0.04, help="size of the last step taken" ) def find_free_port() -> int: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind(("", 0)) port = sock.getsockname()[1] sock.close() return port def main(): parser = argparse.ArgumentParser() mode = "ODE" parser.add_argument("--num_gpus", type=int, default=1) parser.add_argument("--ckpt", type=str, default="./checkpoints") parser.add_argument("--ema", type=bool, default=True) parser.add_argument("--precision", default="bf16", choices=["bf16", "fp32"]) parse_transport_args(parser) if mode == "ODE": parse_ode_args(parser) # Further processing for ODE elif mode == "SDE": parse_sde_args(parser) # Further processing for SDE args = parser.parse_known_args()[0] if args.num_gpus != 1: raise NotImplementedError("Multi-GPU Inference is not yet supported") args.sampler_mode = mode master_port = find_free_port() processes = [] request_queues = [] response_queue = mp.Queue() mp_barrier = mp.Barrier(args.num_gpus + 1) for i in range(args.num_gpus): request_queues.append(mp.Queue()) p = mp.Process( target=model_main, args=( args, master_port, i, request_queues[i], response_queue if i == 0 else None, mp_barrier, ), ) p.start() processes.append(p) with gr.Blocks() as demo: with gr.Row(): gr.Markdown(description) with gr.Row(): with gr.Column(): cap = gr.Textbox( lines=2, label="Caption", interactive=True, value="Miss Mexico portrait of the most beautiful mexican woman, Exquisite detail, 30-megapixel, 4k, 85-mm-lens, sharp-focus, f:8, " "ISO 100, shutter-speed 1:125, diffuse-back-lighting, award-winning photograph, small-catchlight, High-sharpness, facial-symmetry, 8k --q 2 --ar 18:32 --v 5", ) with gr.Row(): res_choices = ["1024x1024", "512x2048", "2048x512"] + [ "(Extrapolation) 1664x1664", "(Extrapolation) 1024x2048", "(Extrapolation) 2048x1024", ] resolution = gr.Dropdown( value=res_choices[0], choices=res_choices, label="Resolution" ) with gr.Row(): num_sampling_steps = gr.Slider( minimum=1, maximum=70, value=30, interactive=True, label="Sampling steps", ) seed = gr.Slider( minimum=0, maximum=int(1e5), value=1, step=1, interactive=True, label="Seed (0 for random)", ) with gr.Accordion( "Advanced Settings for Resolution Extrapolation", open=False ): with gr.Row(): solver = gr.Dropdown( value="euler", choices=["euler", "dopri5", "dopri8"], label="solver", ) t_shift = gr.Slider( minimum=1, maximum=20, value=6, step=1, interactive=True, label="Time shift", ) cfg_scale = gr.Slider( minimum=1.0, maximum=20.0, value=4.0, interactive=True, label="CFG scale", ) with gr.Row(): ntk_scaling = gr.Checkbox( value=True, interactive=True, label="ntk scaling", ) proportional_attn = gr.Checkbox( value=True, interactive=True, label="Proportional attention", ) with gr.Row(): submit_btn = gr.Button("Submit", variant="primary") # reset_btn = gr.ClearButton([ # cap, resolution, # num_sampling_steps, cfg_scale, solver, # t_shift, seed, # ntk_scaling, proportional_attn # ]) with gr.Column(): default_img = Image.open("./image.png") output_img = gr.Image( label="Generated image", interactive=False, format="png", value=default_img, ) with gr.Row(): gr.Examples( examples, [cap], label="Examples", ) def on_submit(*args): for q in request_queues: q.put(args) result = response_queue.get() if isinstance(result, ModelFailure): raise RuntimeError return result submit_btn.click( on_submit, [ cap, resolution, num_sampling_steps, cfg_scale, solver, t_shift, seed, ntk_scaling, proportional_attn, ], [output_img], ) mp_barrier.wait() demo.queue(max_size=20).launch() if __name__ == "__main__": mp.set_start_method("spawn") main()