update files for device agnostic inference
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .ipynb_checkpoints/app-checkpoint.py +7 -1
- .ipynb_checkpoints/modelling_deberta_v2-checkpoint.py +1750 -0
- .ipynb_checkpoints/models-checkpoint.py +700 -698
- .ipynb_checkpoints/requirements-checkpoint.txt +7 -6
- __pycache__/modelling_deberta_v2.cpython-310.pyc +0 -0
- __pycache__/models.cpython-310.pyc +0 -0
- app.py +7 -1
- audioldm/__pycache__/__init__.cpython-310.pyc +0 -0
- audioldm/__pycache__/ldm.cpython-310.pyc +0 -0
- audioldm/__pycache__/pipeline.cpython-310.pyc +0 -0
- audioldm/__pycache__/utils.cpython-310.pyc +0 -0
- audioldm/audio/__pycache__/__init__.cpython-310.pyc +0 -0
- audioldm/audio/__pycache__/audio_processing.cpython-310.pyc +0 -0
- audioldm/audio/__pycache__/stft.cpython-310.pyc +0 -0
- audioldm/audio/__pycache__/tools.cpython-310.pyc +0 -0
- audioldm/hifigan/__pycache__/__init__.cpython-310.pyc +0 -0
- audioldm/hifigan/__pycache__/models.cpython-310.pyc +0 -0
- audioldm/hifigan/__pycache__/utilities.cpython-310.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/__init__.cpython-310.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/attention.cpython-310.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/ddim.cpython-310.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/ddpm.cpython-310.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/ema.cpython-310.pyc +0 -0
- audioldm/latent_diffusion/__pycache__/util.cpython-310.pyc +0 -0
- audioldm/variational_autoencoder/__pycache__/__init__.cpython-310.pyc +0 -0
- audioldm/variational_autoencoder/__pycache__/autoencoder.cpython-310.pyc +0 -0
- audioldm/variational_autoencoder/__pycache__/distributions.cpython-310.pyc +0 -0
- audioldm/variational_autoencoder/__pycache__/modules.cpython-310.pyc +0 -0
- diffusers/src/diffusers/__pycache__/__init__.cpython-310.pyc +0 -0
- diffusers/src/diffusers/__pycache__/configuration_utils.cpython-310.pyc +0 -0
- diffusers/src/diffusers/__pycache__/image_processor.cpython-310.pyc +0 -0
- diffusers/src/diffusers/__pycache__/loaders.cpython-310.pyc +0 -0
- diffusers/src/diffusers/__pycache__/optimization.cpython-310.pyc +0 -0
- diffusers/src/diffusers/__pycache__/pipeline_utils.cpython-310.pyc +0 -0
- diffusers/src/diffusers/__pycache__/training_utils.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/__init__.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/attention.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/attention_processor.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/autoencoder_kl.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/controlnet.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/dual_transformer_2d.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/embeddings.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/modeling_utils.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/prior_transformer.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/resnet.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/t5_film_transformer.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/transformer_2d.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/transformer_temporal.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/unet_1d.cpython-310.pyc +0 -0
- diffusers/src/diffusers/models/__pycache__/unet_1d_blocks.cpython-310.pyc +0 -0
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import json
|
3 |
import torch
|
4 |
import wavio
|
|
|
5 |
from tqdm import tqdm
|
6 |
from huggingface_hub import snapshot_download
|
7 |
|
@@ -23,6 +24,7 @@ class MusicFeaturePredictor:
|
|
23 |
def __init__(self, path, device="cuda:0", cache_dir=None, local_files_only=False):
|
24 |
self.beats_tokenizer = AutoTokenizer.from_pretrained(
|
25 |
"microsoft/deberta-v3-large",
|
|
|
26 |
cache_dir=cache_dir,
|
27 |
local_files_only=local_files_only,
|
28 |
)
|
@@ -164,6 +166,7 @@ class Mustango:
|
|
164 |
main_config["scheduler_name"],
|
165 |
unet_model_config_path=f"{path}/configs/music_diffusion_model_config.json",
|
166 |
).to(device)
|
|
|
167 |
|
168 |
vae_weights = torch.load(
|
169 |
f"{path}/vae/pytorch_model_vae.bin", map_location=device
|
@@ -213,9 +216,11 @@ class Mustango:
|
|
213 |
|
214 |
# Initialize Mustango
|
215 |
if torch.cuda.is_available():
|
216 |
-
mustango = Mustango()
|
217 |
else:
|
218 |
mustango = Mustango(device="cpu")
|
|
|
|
|
219 |
|
220 |
def gradio_generate(prompt, steps, guidance):
|
221 |
output_wave = mustango.generate(prompt, steps, guidance)
|
@@ -225,6 +230,7 @@ def gradio_generate(prompt, steps, guidance):
|
|
225 |
|
226 |
return output_filename
|
227 |
|
|
|
228 |
# description_text = """
|
229 |
# <p><a href="https://huggingface.co/spaces/declare-lab/mustango/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
|
230 |
# Generate music using Mustango by providing a text prompt.
|
|
|
2 |
import json
|
3 |
import torch
|
4 |
import wavio
|
5 |
+
import numpy as np
|
6 |
from tqdm import tqdm
|
7 |
from huggingface_hub import snapshot_download
|
8 |
|
|
|
24 |
def __init__(self, path, device="cuda:0", cache_dir=None, local_files_only=False):
|
25 |
self.beats_tokenizer = AutoTokenizer.from_pretrained(
|
26 |
"microsoft/deberta-v3-large",
|
27 |
+
use_fast=False,
|
28 |
cache_dir=cache_dir,
|
29 |
local_files_only=local_files_only,
|
30 |
)
|
|
|
166 |
main_config["scheduler_name"],
|
167 |
unet_model_config_path=f"{path}/configs/music_diffusion_model_config.json",
|
168 |
).to(device)
|
169 |
+
self.model.device = device
|
170 |
|
171 |
vae_weights = torch.load(
|
172 |
f"{path}/vae/pytorch_model_vae.bin", map_location=device
|
|
|
216 |
|
217 |
# Initialize Mustango
|
218 |
if torch.cuda.is_available():
|
219 |
+
mustango = Mustango(device="cpu")
|
220 |
else:
|
221 |
mustango = Mustango(device="cpu")
|
222 |
+
|
223 |
+
output_wave = mustango.generate("This techno song features a synth lead playing the main melody.", 5, 3, disable_progress=False)
|
224 |
|
225 |
def gradio_generate(prompt, steps, guidance):
|
226 |
output_wave = mustango.generate(prompt, steps, guidance)
|
|
|
230 |
|
231 |
return output_filename
|
232 |
|
233 |
+
|
234 |
# description_text = """
|
235 |
# <p><a href="https://huggingface.co/spaces/declare-lab/mustango/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
|
236 |
# Generate music using Mustango by providing a text prompt.
|
.ipynb_checkpoints/modelling_deberta_v2-checkpoint.py
ADDED
@@ -0,0 +1,1750 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 Microsoft and the Hugging Face Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch DeBERTa-v2 model."""
|
16 |
+
|
17 |
+
from collections.abc import Sequence
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
|
24 |
+
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.modeling_outputs import (
|
27 |
+
ModelOutput,
|
28 |
+
BaseModelOutput,
|
29 |
+
MaskedLMOutput,
|
30 |
+
MultipleChoiceModelOutput,
|
31 |
+
QuestionAnsweringModelOutput,
|
32 |
+
SequenceClassifierOutput,
|
33 |
+
TokenClassifierOutput,
|
34 |
+
)
|
35 |
+
from transformers.modeling_utils import PreTrainedModel
|
36 |
+
from transformers.pytorch_utils import softmax_backward_data
|
37 |
+
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
38 |
+
from transformers.models.deberta_v2.configuration_deberta_v2 import DebertaV2Config
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
_CONFIG_FOR_DOC = "DebertaV2Config"
|
44 |
+
_CHECKPOINT_FOR_DOC = "microsoft/deberta-v2-xlarge"
|
45 |
+
_QA_TARGET_START_INDEX = 2
|
46 |
+
_QA_TARGET_END_INDEX = 9
|
47 |
+
|
48 |
+
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
49 |
+
"microsoft/deberta-v2-xlarge",
|
50 |
+
"microsoft/deberta-v2-xxlarge",
|
51 |
+
"microsoft/deberta-v2-xlarge-mnli",
|
52 |
+
"microsoft/deberta-v2-xxlarge-mnli",
|
53 |
+
]
|
54 |
+
|
55 |
+
|
56 |
+
# Copied from transformers.models.deberta.modeling_deberta.ContextPooler
|
57 |
+
class ContextPooler(nn.Module):
|
58 |
+
def __init__(self, config):
|
59 |
+
super().__init__()
|
60 |
+
self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
|
61 |
+
self.dropout = StableDropout(config.pooler_dropout)
|
62 |
+
self.config = config
|
63 |
+
|
64 |
+
def forward(self, hidden_states):
|
65 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
66 |
+
# to the first token.
|
67 |
+
|
68 |
+
context_token = hidden_states[:, 0]
|
69 |
+
context_token = self.dropout(context_token)
|
70 |
+
pooled_output = self.dense(context_token)
|
71 |
+
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
|
72 |
+
return pooled_output
|
73 |
+
|
74 |
+
@property
|
75 |
+
def output_dim(self):
|
76 |
+
return self.config.hidden_size
|
77 |
+
|
78 |
+
|
79 |
+
# Copied from transformers.models.deberta.modeling_deberta.XSoftmax with deberta->deberta_v2
|
80 |
+
class XSoftmax(torch.autograd.Function):
|
81 |
+
"""
|
82 |
+
Masked Softmax which is optimized for saving memory
|
83 |
+
|
84 |
+
Args:
|
85 |
+
input (`torch.tensor`): The input tensor that will apply softmax.
|
86 |
+
mask (`torch.IntTensor`):
|
87 |
+
The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
|
88 |
+
dim (int): The dimension that will apply softmax
|
89 |
+
|
90 |
+
Example:
|
91 |
+
|
92 |
+
```python
|
93 |
+
>>> import torch
|
94 |
+
>>> from transformers.models.deberta_v2.modeling_deberta_v2 import XSoftmax
|
95 |
+
|
96 |
+
>>> # Make a tensor
|
97 |
+
>>> x = torch.randn([4, 20, 100])
|
98 |
+
|
99 |
+
>>> # Create a mask
|
100 |
+
>>> mask = (x > 0).int()
|
101 |
+
|
102 |
+
>>> # Specify the dimension to apply softmax
|
103 |
+
>>> dim = -1
|
104 |
+
|
105 |
+
>>> y = XSoftmax.apply(x, mask, dim)
|
106 |
+
```"""
|
107 |
+
|
108 |
+
@staticmethod
|
109 |
+
def forward(self, input, mask, dim):
|
110 |
+
self.dim = dim
|
111 |
+
rmask = ~(mask.to(torch.bool))
|
112 |
+
|
113 |
+
output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min))
|
114 |
+
output = torch.softmax(output, self.dim)
|
115 |
+
output.masked_fill_(rmask, 0)
|
116 |
+
self.save_for_backward(output)
|
117 |
+
return output
|
118 |
+
|
119 |
+
@staticmethod
|
120 |
+
def backward(self, grad_output):
|
121 |
+
(output,) = self.saved_tensors
|
122 |
+
inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output)
|
123 |
+
return inputGrad, None, None
|
124 |
+
|
125 |
+
@staticmethod
|
126 |
+
def symbolic(g, self, mask, dim):
|
127 |
+
import torch.onnx.symbolic_helper as sym_help
|
128 |
+
from torch.onnx.symbolic_opset9 import masked_fill, softmax
|
129 |
+
|
130 |
+
mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"])
|
131 |
+
r_mask = g.op(
|
132 |
+
"Cast",
|
133 |
+
g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value),
|
134 |
+
to_i=sym_help.cast_pytorch_to_onnx["Bool"],
|
135 |
+
)
|
136 |
+
output = masked_fill(
|
137 |
+
g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min))
|
138 |
+
)
|
139 |
+
output = softmax(g, output, dim)
|
140 |
+
return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool)))
|
141 |
+
|
142 |
+
|
143 |
+
# Copied from transformers.models.deberta.modeling_deberta.DropoutContext
|
144 |
+
class DropoutContext(object):
|
145 |
+
def __init__(self):
|
146 |
+
self.dropout = 0
|
147 |
+
self.mask = None
|
148 |
+
self.scale = 1
|
149 |
+
self.reuse_mask = True
|
150 |
+
|
151 |
+
|
152 |
+
# Copied from transformers.models.deberta.modeling_deberta.get_mask
|
153 |
+
def get_mask(input, local_context):
|
154 |
+
if not isinstance(local_context, DropoutContext):
|
155 |
+
dropout = local_context
|
156 |
+
mask = None
|
157 |
+
else:
|
158 |
+
dropout = local_context.dropout
|
159 |
+
dropout *= local_context.scale
|
160 |
+
mask = local_context.mask if local_context.reuse_mask else None
|
161 |
+
|
162 |
+
if dropout > 0 and mask is None:
|
163 |
+
mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool)
|
164 |
+
|
165 |
+
if isinstance(local_context, DropoutContext):
|
166 |
+
if local_context.mask is None:
|
167 |
+
local_context.mask = mask
|
168 |
+
|
169 |
+
return mask, dropout
|
170 |
+
|
171 |
+
|
172 |
+
# Copied from transformers.models.deberta.modeling_deberta.XDropout
|
173 |
+
class XDropout(torch.autograd.Function):
|
174 |
+
"""Optimized dropout function to save computation and memory by using mask operation instead of multiplication."""
|
175 |
+
|
176 |
+
@staticmethod
|
177 |
+
def forward(ctx, input, local_ctx):
|
178 |
+
mask, dropout = get_mask(input, local_ctx)
|
179 |
+
ctx.scale = 1.0 / (1 - dropout)
|
180 |
+
if dropout > 0:
|
181 |
+
ctx.save_for_backward(mask)
|
182 |
+
return input.masked_fill(mask, 0) * ctx.scale
|
183 |
+
else:
|
184 |
+
return input
|
185 |
+
|
186 |
+
@staticmethod
|
187 |
+
def backward(ctx, grad_output):
|
188 |
+
if ctx.scale > 1:
|
189 |
+
(mask,) = ctx.saved_tensors
|
190 |
+
return grad_output.masked_fill(mask, 0) * ctx.scale, None
|
191 |
+
else:
|
192 |
+
return grad_output, None
|
193 |
+
|
194 |
+
@staticmethod
|
195 |
+
def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value:
|
196 |
+
from torch.onnx import symbolic_opset12
|
197 |
+
|
198 |
+
dropout_p = local_ctx
|
199 |
+
if isinstance(local_ctx, DropoutContext):
|
200 |
+
dropout_p = local_ctx.dropout
|
201 |
+
# StableDropout only calls this function when training.
|
202 |
+
train = True
|
203 |
+
# TODO: We should check if the opset_version being used to export
|
204 |
+
# is > 12 here, but there's no good way to do that. As-is, if the
|
205 |
+
# opset_version < 12, export will fail with a CheckerError.
|
206 |
+
# Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like:
|
207 |
+
# if opset_version < 12:
|
208 |
+
# return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train)
|
209 |
+
return symbolic_opset12.dropout(g, input, dropout_p, train)
|
210 |
+
|
211 |
+
|
212 |
+
# Copied from transformers.models.deberta.modeling_deberta.StableDropout
|
213 |
+
class StableDropout(nn.Module):
|
214 |
+
"""
|
215 |
+
Optimized dropout module for stabilizing the training
|
216 |
+
|
217 |
+
Args:
|
218 |
+
drop_prob (float): the dropout probabilities
|
219 |
+
"""
|
220 |
+
|
221 |
+
def __init__(self, drop_prob):
|
222 |
+
super().__init__()
|
223 |
+
self.drop_prob = drop_prob
|
224 |
+
self.count = 0
|
225 |
+
self.context_stack = None
|
226 |
+
|
227 |
+
def forward(self, x):
|
228 |
+
"""
|
229 |
+
Call the module
|
230 |
+
|
231 |
+
Args:
|
232 |
+
x (`torch.tensor`): The input tensor to apply dropout
|
233 |
+
"""
|
234 |
+
if self.training and self.drop_prob > 0:
|
235 |
+
return XDropout.apply(x, self.get_context())
|
236 |
+
return x
|
237 |
+
|
238 |
+
def clear_context(self):
|
239 |
+
self.count = 0
|
240 |
+
self.context_stack = None
|
241 |
+
|
242 |
+
def init_context(self, reuse_mask=True, scale=1):
|
243 |
+
if self.context_stack is None:
|
244 |
+
self.context_stack = []
|
245 |
+
self.count = 0
|
246 |
+
for c in self.context_stack:
|
247 |
+
c.reuse_mask = reuse_mask
|
248 |
+
c.scale = scale
|
249 |
+
|
250 |
+
def get_context(self):
|
251 |
+
if self.context_stack is not None:
|
252 |
+
if self.count >= len(self.context_stack):
|
253 |
+
self.context_stack.append(DropoutContext())
|
254 |
+
ctx = self.context_stack[self.count]
|
255 |
+
ctx.dropout = self.drop_prob
|
256 |
+
self.count += 1
|
257 |
+
return ctx
|
258 |
+
else:
|
259 |
+
return self.drop_prob
|
260 |
+
|
261 |
+
|
262 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaSelfOutput with DebertaLayerNorm->LayerNorm
|
263 |
+
class DebertaV2SelfOutput(nn.Module):
|
264 |
+
def __init__(self, config):
|
265 |
+
super().__init__()
|
266 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
267 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
268 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
269 |
+
|
270 |
+
def forward(self, hidden_states, input_tensor):
|
271 |
+
hidden_states = self.dense(hidden_states)
|
272 |
+
hidden_states = self.dropout(hidden_states)
|
273 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
274 |
+
return hidden_states
|
275 |
+
|
276 |
+
|
277 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaAttention with Deberta->DebertaV2
|
278 |
+
class DebertaV2Attention(nn.Module):
|
279 |
+
def __init__(self, config):
|
280 |
+
super().__init__()
|
281 |
+
self.self = DisentangledSelfAttention(config)
|
282 |
+
self.output = DebertaV2SelfOutput(config)
|
283 |
+
self.config = config
|
284 |
+
|
285 |
+
def forward(
|
286 |
+
self,
|
287 |
+
hidden_states,
|
288 |
+
attention_mask,
|
289 |
+
output_attentions=False,
|
290 |
+
query_states=None,
|
291 |
+
relative_pos=None,
|
292 |
+
rel_embeddings=None,
|
293 |
+
):
|
294 |
+
self_output = self.self(
|
295 |
+
hidden_states,
|
296 |
+
attention_mask,
|
297 |
+
output_attentions,
|
298 |
+
query_states=query_states,
|
299 |
+
relative_pos=relative_pos,
|
300 |
+
rel_embeddings=rel_embeddings,
|
301 |
+
)
|
302 |
+
if output_attentions:
|
303 |
+
self_output, att_matrix = self_output
|
304 |
+
if query_states is None:
|
305 |
+
query_states = hidden_states
|
306 |
+
attention_output = self.output(self_output, query_states)
|
307 |
+
|
308 |
+
if output_attentions:
|
309 |
+
return (attention_output, att_matrix)
|
310 |
+
else:
|
311 |
+
return attention_output
|
312 |
+
|
313 |
+
|
314 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->DebertaV2
|
315 |
+
class DebertaV2Intermediate(nn.Module):
|
316 |
+
def __init__(self, config):
|
317 |
+
super().__init__()
|
318 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
319 |
+
if isinstance(config.hidden_act, str):
|
320 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
321 |
+
else:
|
322 |
+
self.intermediate_act_fn = config.hidden_act
|
323 |
+
|
324 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
325 |
+
hidden_states = self.dense(hidden_states)
|
326 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
327 |
+
return hidden_states
|
328 |
+
|
329 |
+
|
330 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaOutput with DebertaLayerNorm->LayerNorm
|
331 |
+
class DebertaV2Output(nn.Module):
|
332 |
+
def __init__(self, config):
|
333 |
+
super().__init__()
|
334 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
335 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
336 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
337 |
+
self.config = config
|
338 |
+
|
339 |
+
def forward(self, hidden_states, input_tensor):
|
340 |
+
hidden_states = self.dense(hidden_states)
|
341 |
+
hidden_states = self.dropout(hidden_states)
|
342 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
343 |
+
return hidden_states
|
344 |
+
|
345 |
+
|
346 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaLayer with Deberta->DebertaV2
|
347 |
+
class DebertaV2Layer(nn.Module):
|
348 |
+
def __init__(self, config):
|
349 |
+
super().__init__()
|
350 |
+
self.attention = DebertaV2Attention(config)
|
351 |
+
self.intermediate = DebertaV2Intermediate(config)
|
352 |
+
self.output = DebertaV2Output(config)
|
353 |
+
|
354 |
+
def forward(
|
355 |
+
self,
|
356 |
+
hidden_states,
|
357 |
+
attention_mask,
|
358 |
+
query_states=None,
|
359 |
+
relative_pos=None,
|
360 |
+
rel_embeddings=None,
|
361 |
+
output_attentions=False,
|
362 |
+
):
|
363 |
+
attention_output = self.attention(
|
364 |
+
hidden_states,
|
365 |
+
attention_mask,
|
366 |
+
output_attentions=output_attentions,
|
367 |
+
query_states=query_states,
|
368 |
+
relative_pos=relative_pos,
|
369 |
+
rel_embeddings=rel_embeddings,
|
370 |
+
)
|
371 |
+
if output_attentions:
|
372 |
+
attention_output, att_matrix = attention_output
|
373 |
+
intermediate_output = self.intermediate(attention_output)
|
374 |
+
layer_output = self.output(intermediate_output, attention_output)
|
375 |
+
if output_attentions:
|
376 |
+
return (layer_output, att_matrix)
|
377 |
+
else:
|
378 |
+
return layer_output
|
379 |
+
|
380 |
+
|
381 |
+
class ConvLayer(nn.Module):
|
382 |
+
def __init__(self, config):
|
383 |
+
super().__init__()
|
384 |
+
kernel_size = getattr(config, "conv_kernel_size", 3)
|
385 |
+
groups = getattr(config, "conv_groups", 1)
|
386 |
+
self.conv_act = getattr(config, "conv_act", "tanh")
|
387 |
+
self.conv = nn.Conv1d(
|
388 |
+
config.hidden_size, config.hidden_size, kernel_size, padding=(kernel_size - 1) // 2, groups=groups
|
389 |
+
)
|
390 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
391 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
392 |
+
self.config = config
|
393 |
+
|
394 |
+
def forward(self, hidden_states, residual_states, input_mask):
|
395 |
+
out = self.conv(hidden_states.permute(0, 2, 1).contiguous()).permute(0, 2, 1).contiguous()
|
396 |
+
rmask = (1 - input_mask).bool()
|
397 |
+
out.masked_fill_(rmask.unsqueeze(-1).expand(out.size()), 0)
|
398 |
+
out = ACT2FN[self.conv_act](self.dropout(out))
|
399 |
+
|
400 |
+
layer_norm_input = residual_states + out
|
401 |
+
output = self.LayerNorm(layer_norm_input).to(layer_norm_input)
|
402 |
+
|
403 |
+
if input_mask is None:
|
404 |
+
output_states = output
|
405 |
+
else:
|
406 |
+
if input_mask.dim() != layer_norm_input.dim():
|
407 |
+
if input_mask.dim() == 4:
|
408 |
+
input_mask = input_mask.squeeze(1).squeeze(1)
|
409 |
+
input_mask = input_mask.unsqueeze(2)
|
410 |
+
|
411 |
+
input_mask = input_mask.to(output.dtype)
|
412 |
+
output_states = output * input_mask
|
413 |
+
|
414 |
+
return output_states
|
415 |
+
|
416 |
+
|
417 |
+
class DebertaV2Encoder(nn.Module):
|
418 |
+
"""Modified BertEncoder with relative position bias support"""
|
419 |
+
|
420 |
+
def __init__(self, config):
|
421 |
+
super().__init__()
|
422 |
+
|
423 |
+
self.layer = nn.ModuleList([DebertaV2Layer(config) for _ in range(config.num_hidden_layers)])
|
424 |
+
self.relative_attention = getattr(config, "relative_attention", False)
|
425 |
+
|
426 |
+
if self.relative_attention:
|
427 |
+
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
428 |
+
if self.max_relative_positions < 1:
|
429 |
+
self.max_relative_positions = config.max_position_embeddings
|
430 |
+
|
431 |
+
self.position_buckets = getattr(config, "position_buckets", -1)
|
432 |
+
pos_ebd_size = self.max_relative_positions * 2
|
433 |
+
|
434 |
+
if self.position_buckets > 0:
|
435 |
+
pos_ebd_size = self.position_buckets * 2
|
436 |
+
|
437 |
+
self.rel_embeddings = nn.Embedding(pos_ebd_size, config.hidden_size)
|
438 |
+
|
439 |
+
self.norm_rel_ebd = [x.strip() for x in getattr(config, "norm_rel_ebd", "none").lower().split("|")]
|
440 |
+
|
441 |
+
if "layer_norm" in self.norm_rel_ebd:
|
442 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
|
443 |
+
|
444 |
+
self.conv = ConvLayer(config) if getattr(config, "conv_kernel_size", 0) > 0 else None
|
445 |
+
self.gradient_checkpointing = False
|
446 |
+
|
447 |
+
def get_rel_embedding(self):
|
448 |
+
rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
|
449 |
+
if rel_embeddings is not None and ("layer_norm" in self.norm_rel_ebd):
|
450 |
+
rel_embeddings = self.LayerNorm(rel_embeddings)
|
451 |
+
return rel_embeddings
|
452 |
+
|
453 |
+
def get_attention_mask(self, attention_mask):
|
454 |
+
if attention_mask.dim() <= 2:
|
455 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
456 |
+
attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
|
457 |
+
elif attention_mask.dim() == 3:
|
458 |
+
attention_mask = attention_mask.unsqueeze(1)
|
459 |
+
|
460 |
+
return attention_mask
|
461 |
+
|
462 |
+
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
|
463 |
+
if self.relative_attention and relative_pos is None:
|
464 |
+
q = query_states.size(-2) if query_states is not None else hidden_states.size(-2)
|
465 |
+
relative_pos = build_relative_position(
|
466 |
+
q,
|
467 |
+
hidden_states.size(-2),
|
468 |
+
bucket_size=self.position_buckets,
|
469 |
+
max_position=self.max_relative_positions,
|
470 |
+
device=hidden_states.device,
|
471 |
+
)
|
472 |
+
return relative_pos
|
473 |
+
|
474 |
+
def forward(
|
475 |
+
self,
|
476 |
+
hidden_states,
|
477 |
+
attention_mask,
|
478 |
+
output_hidden_states=True,
|
479 |
+
output_attentions=False,
|
480 |
+
query_states=None,
|
481 |
+
relative_pos=None,
|
482 |
+
return_dict=True,
|
483 |
+
):
|
484 |
+
if attention_mask.dim() <= 2:
|
485 |
+
input_mask = attention_mask
|
486 |
+
else:
|
487 |
+
input_mask = attention_mask.sum(-2) > 0
|
488 |
+
attention_mask = self.get_attention_mask(attention_mask)
|
489 |
+
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
|
490 |
+
|
491 |
+
all_hidden_states = () if output_hidden_states else None
|
492 |
+
all_attentions = () if output_attentions else None
|
493 |
+
|
494 |
+
if isinstance(hidden_states, Sequence):
|
495 |
+
next_kv = hidden_states[0]
|
496 |
+
else:
|
497 |
+
next_kv = hidden_states
|
498 |
+
rel_embeddings = self.get_rel_embedding()
|
499 |
+
output_states = next_kv
|
500 |
+
for i, layer_module in enumerate(self.layer):
|
501 |
+
if output_hidden_states:
|
502 |
+
all_hidden_states = all_hidden_states + (output_states,)
|
503 |
+
|
504 |
+
if self.gradient_checkpointing and self.training:
|
505 |
+
|
506 |
+
def create_custom_forward(module):
|
507 |
+
def custom_forward(*inputs):
|
508 |
+
return module(*inputs, output_attentions)
|
509 |
+
|
510 |
+
return custom_forward
|
511 |
+
|
512 |
+
output_states = torch.utils.checkpoint.checkpoint(
|
513 |
+
create_custom_forward(layer_module),
|
514 |
+
next_kv,
|
515 |
+
attention_mask,
|
516 |
+
query_states,
|
517 |
+
relative_pos,
|
518 |
+
rel_embeddings,
|
519 |
+
)
|
520 |
+
else:
|
521 |
+
output_states = layer_module(
|
522 |
+
next_kv,
|
523 |
+
attention_mask,
|
524 |
+
query_states=query_states,
|
525 |
+
relative_pos=relative_pos,
|
526 |
+
rel_embeddings=rel_embeddings,
|
527 |
+
output_attentions=output_attentions,
|
528 |
+
)
|
529 |
+
|
530 |
+
if output_attentions:
|
531 |
+
output_states, att_m = output_states
|
532 |
+
|
533 |
+
if i == 0 and self.conv is not None:
|
534 |
+
output_states = self.conv(hidden_states, output_states, input_mask)
|
535 |
+
|
536 |
+
if query_states is not None:
|
537 |
+
query_states = output_states
|
538 |
+
if isinstance(hidden_states, Sequence):
|
539 |
+
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
|
540 |
+
else:
|
541 |
+
next_kv = output_states
|
542 |
+
|
543 |
+
if output_attentions:
|
544 |
+
all_attentions = all_attentions + (att_m,)
|
545 |
+
|
546 |
+
if output_hidden_states:
|
547 |
+
all_hidden_states = all_hidden_states + (output_states,)
|
548 |
+
|
549 |
+
if not return_dict:
|
550 |
+
return tuple(v for v in [output_states, all_hidden_states, all_attentions] if v is not None)
|
551 |
+
return BaseModelOutput(
|
552 |
+
last_hidden_state=output_states, hidden_states=all_hidden_states, attentions=all_attentions
|
553 |
+
)
|
554 |
+
|
555 |
+
|
556 |
+
def make_log_bucket_position(relative_pos, bucket_size, max_position):
|
557 |
+
sign = torch.sign(relative_pos)
|
558 |
+
mid = bucket_size // 2
|
559 |
+
abs_pos = torch.where(
|
560 |
+
(relative_pos < mid) & (relative_pos > -mid),
|
561 |
+
torch.tensor(mid - 1).type_as(relative_pos),
|
562 |
+
torch.abs(relative_pos),
|
563 |
+
)
|
564 |
+
log_pos = (
|
565 |
+
torch.ceil(torch.log(abs_pos / mid) / torch.log(torch.tensor((max_position - 1) / mid)) * (mid - 1)) + mid
|
566 |
+
)
|
567 |
+
bucket_pos = torch.where(abs_pos <= mid, relative_pos.type_as(log_pos), log_pos * sign)
|
568 |
+
return bucket_pos
|
569 |
+
|
570 |
+
|
571 |
+
def build_relative_position(query_size, key_size, bucket_size=-1, max_position=-1, device=None):
|
572 |
+
"""
|
573 |
+
Build relative position according to the query and key
|
574 |
+
|
575 |
+
We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
|
576 |
+
\\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
|
577 |
+
P_k\\)
|
578 |
+
|
579 |
+
Args:
|
580 |
+
query_size (int): the length of query
|
581 |
+
key_size (int): the length of key
|
582 |
+
bucket_size (int): the size of position bucket
|
583 |
+
max_position (int): the maximum allowed absolute position
|
584 |
+
device (`torch.device`): the device on which tensors will be created.
|
585 |
+
|
586 |
+
Return:
|
587 |
+
`torch.LongTensor`: A tensor with shape [1, query_size, key_size]
|
588 |
+
"""
|
589 |
+
|
590 |
+
q_ids = torch.arange(0, query_size, device=device)
|
591 |
+
k_ids = torch.arange(0, key_size, device=device)
|
592 |
+
rel_pos_ids = q_ids[:, None] - k_ids[None, :]
|
593 |
+
if bucket_size > 0 and max_position > 0:
|
594 |
+
rel_pos_ids = make_log_bucket_position(rel_pos_ids, bucket_size, max_position)
|
595 |
+
rel_pos_ids = rel_pos_ids.to(torch.long)
|
596 |
+
rel_pos_ids = rel_pos_ids[:query_size, :]
|
597 |
+
rel_pos_ids = rel_pos_ids.unsqueeze(0)
|
598 |
+
return rel_pos_ids
|
599 |
+
|
600 |
+
|
601 |
+
@torch.jit.script
|
602 |
+
# Copied from transformers.models.deberta.modeling_deberta.c2p_dynamic_expand
|
603 |
+
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
|
604 |
+
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)])
|
605 |
+
|
606 |
+
|
607 |
+
@torch.jit.script
|
608 |
+
# Copied from transformers.models.deberta.modeling_deberta.p2c_dynamic_expand
|
609 |
+
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
|
610 |
+
return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)])
|
611 |
+
|
612 |
+
|
613 |
+
@torch.jit.script
|
614 |
+
# Copied from transformers.models.deberta.modeling_deberta.pos_dynamic_expand
|
615 |
+
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
|
616 |
+
return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2)))
|
617 |
+
|
618 |
+
|
619 |
+
class DisentangledSelfAttention(nn.Module):
|
620 |
+
"""
|
621 |
+
Disentangled self-attention module
|
622 |
+
|
623 |
+
Parameters:
|
624 |
+
config (`DebertaV2Config`):
|
625 |
+
A model config class instance with the configuration to build a new model. The schema is similar to
|
626 |
+
*BertConfig*, for more details, please refer [`DebertaV2Config`]
|
627 |
+
|
628 |
+
"""
|
629 |
+
|
630 |
+
def __init__(self, config):
|
631 |
+
super().__init__()
|
632 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
633 |
+
raise ValueError(
|
634 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
635 |
+
f"heads ({config.num_attention_heads})"
|
636 |
+
)
|
637 |
+
self.num_attention_heads = config.num_attention_heads
|
638 |
+
_attention_head_size = config.hidden_size // config.num_attention_heads
|
639 |
+
self.attention_head_size = getattr(config, "attention_head_size", _attention_head_size)
|
640 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
641 |
+
self.query_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
642 |
+
self.key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
643 |
+
self.value_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
644 |
+
|
645 |
+
self.share_att_key = getattr(config, "share_att_key", False)
|
646 |
+
self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
|
647 |
+
self.relative_attention = getattr(config, "relative_attention", False)
|
648 |
+
|
649 |
+
if self.relative_attention:
|
650 |
+
self.position_buckets = getattr(config, "position_buckets", -1)
|
651 |
+
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
|
652 |
+
if self.max_relative_positions < 1:
|
653 |
+
self.max_relative_positions = config.max_position_embeddings
|
654 |
+
self.pos_ebd_size = self.max_relative_positions
|
655 |
+
if self.position_buckets > 0:
|
656 |
+
self.pos_ebd_size = self.position_buckets
|
657 |
+
|
658 |
+
self.pos_dropout = StableDropout(config.hidden_dropout_prob)
|
659 |
+
|
660 |
+
if not self.share_att_key:
|
661 |
+
if "c2p" in self.pos_att_type:
|
662 |
+
self.pos_key_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
663 |
+
if "p2c" in self.pos_att_type:
|
664 |
+
self.pos_query_proj = nn.Linear(config.hidden_size, self.all_head_size)
|
665 |
+
|
666 |
+
self.dropout = StableDropout(config.attention_probs_dropout_prob)
|
667 |
+
|
668 |
+
def transpose_for_scores(self, x, attention_heads):
|
669 |
+
new_x_shape = x.size()[:-1] + (attention_heads, -1)
|
670 |
+
x = x.view(new_x_shape)
|
671 |
+
return x.permute(0, 2, 1, 3).contiguous().view(-1, x.size(1), x.size(-1))
|
672 |
+
|
673 |
+
def forward(
|
674 |
+
self,
|
675 |
+
hidden_states,
|
676 |
+
attention_mask,
|
677 |
+
output_attentions=False,
|
678 |
+
query_states=None,
|
679 |
+
relative_pos=None,
|
680 |
+
rel_embeddings=None,
|
681 |
+
):
|
682 |
+
"""
|
683 |
+
Call the module
|
684 |
+
|
685 |
+
Args:
|
686 |
+
hidden_states (`torch.FloatTensor`):
|
687 |
+
Input states to the module usually the output from previous layer, it will be the Q,K and V in
|
688 |
+
*Attention(Q,K,V)*
|
689 |
+
|
690 |
+
attention_mask (`torch.BoolTensor`):
|
691 |
+
An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
|
692 |
+
sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
|
693 |
+
th token.
|
694 |
+
|
695 |
+
output_attentions (`bool`, optional):
|
696 |
+
Whether return the attention matrix.
|
697 |
+
|
698 |
+
query_states (`torch.FloatTensor`, optional):
|
699 |
+
The *Q* state in *Attention(Q,K,V)*.
|
700 |
+
|
701 |
+
relative_pos (`torch.LongTensor`):
|
702 |
+
The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
|
703 |
+
values ranging in [*-max_relative_positions*, *max_relative_positions*].
|
704 |
+
|
705 |
+
rel_embeddings (`torch.FloatTensor`):
|
706 |
+
The embedding of relative distances. It's a tensor of shape [\\(2 \\times
|
707 |
+
\\text{max_relative_positions}\\), *hidden_size*].
|
708 |
+
|
709 |
+
|
710 |
+
"""
|
711 |
+
if query_states is None:
|
712 |
+
query_states = hidden_states
|
713 |
+
query_layer = self.transpose_for_scores(self.query_proj(query_states), self.num_attention_heads)
|
714 |
+
key_layer = self.transpose_for_scores(self.key_proj(hidden_states), self.num_attention_heads)
|
715 |
+
value_layer = self.transpose_for_scores(self.value_proj(hidden_states), self.num_attention_heads)
|
716 |
+
|
717 |
+
rel_att = None
|
718 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
719 |
+
scale_factor = 1
|
720 |
+
if "c2p" in self.pos_att_type:
|
721 |
+
scale_factor += 1
|
722 |
+
if "p2c" in self.pos_att_type:
|
723 |
+
scale_factor += 1
|
724 |
+
scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor)
|
725 |
+
attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2)) / scale.to(dtype=query_layer.dtype)
|
726 |
+
if self.relative_attention:
|
727 |
+
rel_embeddings = self.pos_dropout(rel_embeddings)
|
728 |
+
rel_att = self.disentangled_attention_bias(
|
729 |
+
query_layer, key_layer, relative_pos, rel_embeddings, scale_factor
|
730 |
+
)
|
731 |
+
|
732 |
+
if rel_att is not None:
|
733 |
+
attention_scores = attention_scores + rel_att
|
734 |
+
attention_scores = attention_scores
|
735 |
+
attention_scores = attention_scores.view(
|
736 |
+
-1, self.num_attention_heads, attention_scores.size(-2), attention_scores.size(-1)
|
737 |
+
)
|
738 |
+
|
739 |
+
# bsz x height x length x dimension
|
740 |
+
attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1)
|
741 |
+
attention_probs = self.dropout(attention_probs)
|
742 |
+
context_layer = torch.bmm(
|
743 |
+
attention_probs.view(-1, attention_probs.size(-2), attention_probs.size(-1)), value_layer
|
744 |
+
)
|
745 |
+
context_layer = (
|
746 |
+
context_layer.view(-1, self.num_attention_heads, context_layer.size(-2), context_layer.size(-1))
|
747 |
+
.permute(0, 2, 1, 3)
|
748 |
+
.contiguous()
|
749 |
+
)
|
750 |
+
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
|
751 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
752 |
+
if output_attentions:
|
753 |
+
return (context_layer, attention_probs)
|
754 |
+
else:
|
755 |
+
return context_layer
|
756 |
+
|
757 |
+
def disentangled_attention_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
|
758 |
+
if relative_pos is None:
|
759 |
+
q = query_layer.size(-2)
|
760 |
+
relative_pos = build_relative_position(
|
761 |
+
q,
|
762 |
+
key_layer.size(-2),
|
763 |
+
bucket_size=self.position_buckets,
|
764 |
+
max_position=self.max_relative_positions,
|
765 |
+
device=query_layer.device,
|
766 |
+
)
|
767 |
+
if relative_pos.dim() == 2:
|
768 |
+
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
|
769 |
+
elif relative_pos.dim() == 3:
|
770 |
+
relative_pos = relative_pos.unsqueeze(1)
|
771 |
+
# bsz x height x query x key
|
772 |
+
elif relative_pos.dim() != 4:
|
773 |
+
raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
|
774 |
+
|
775 |
+
att_span = self.pos_ebd_size
|
776 |
+
relative_pos = relative_pos.long().to(query_layer.device)
|
777 |
+
|
778 |
+
rel_embeddings = rel_embeddings[0 : att_span * 2, :].unsqueeze(0)
|
779 |
+
if self.share_att_key:
|
780 |
+
pos_query_layer = self.transpose_for_scores(
|
781 |
+
self.query_proj(rel_embeddings), self.num_attention_heads
|
782 |
+
).repeat(query_layer.size(0) // self.num_attention_heads, 1, 1)
|
783 |
+
pos_key_layer = self.transpose_for_scores(self.key_proj(rel_embeddings), self.num_attention_heads).repeat(
|
784 |
+
query_layer.size(0) // self.num_attention_heads, 1, 1
|
785 |
+
)
|
786 |
+
else:
|
787 |
+
if "c2p" in self.pos_att_type:
|
788 |
+
pos_key_layer = self.transpose_for_scores(
|
789 |
+
self.pos_key_proj(rel_embeddings), self.num_attention_heads
|
790 |
+
).repeat(
|
791 |
+
query_layer.size(0) // self.num_attention_heads, 1, 1
|
792 |
+
) # .split(self.all_head_size, dim=-1)
|
793 |
+
if "p2c" in self.pos_att_type:
|
794 |
+
pos_query_layer = self.transpose_for_scores(
|
795 |
+
self.pos_query_proj(rel_embeddings), self.num_attention_heads
|
796 |
+
).repeat(
|
797 |
+
query_layer.size(0) // self.num_attention_heads, 1, 1
|
798 |
+
) # .split(self.all_head_size, dim=-1)
|
799 |
+
|
800 |
+
score = 0
|
801 |
+
# content->position
|
802 |
+
if "c2p" in self.pos_att_type:
|
803 |
+
scale = torch.sqrt(torch.tensor(pos_key_layer.size(-1), dtype=torch.float) * scale_factor)
|
804 |
+
c2p_att = torch.bmm(query_layer, pos_key_layer.transpose(-1, -2))
|
805 |
+
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
|
806 |
+
c2p_att = torch.gather(
|
807 |
+
c2p_att,
|
808 |
+
dim=-1,
|
809 |
+
index=c2p_pos.squeeze(0).expand([query_layer.size(0), query_layer.size(1), relative_pos.size(-1)]),
|
810 |
+
)
|
811 |
+
score += c2p_att / scale.to(dtype=c2p_att.dtype)
|
812 |
+
|
813 |
+
# position->content
|
814 |
+
if "p2c" in self.pos_att_type:
|
815 |
+
scale = torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor)
|
816 |
+
if key_layer.size(-2) != query_layer.size(-2):
|
817 |
+
r_pos = build_relative_position(
|
818 |
+
key_layer.size(-2),
|
819 |
+
key_layer.size(-2),
|
820 |
+
bucket_size=self.position_buckets,
|
821 |
+
max_position=self.max_relative_positions,
|
822 |
+
device=query_layer.device,
|
823 |
+
)
|
824 |
+
r_pos = r_pos.unsqueeze(0)
|
825 |
+
else:
|
826 |
+
r_pos = relative_pos
|
827 |
+
|
828 |
+
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
|
829 |
+
p2c_att = torch.bmm(key_layer, pos_query_layer.transpose(-1, -2))
|
830 |
+
p2c_att = torch.gather(
|
831 |
+
p2c_att,
|
832 |
+
dim=-1,
|
833 |
+
index=p2c_pos.squeeze(0).expand([query_layer.size(0), key_layer.size(-2), key_layer.size(-2)]),
|
834 |
+
).transpose(-1, -2)
|
835 |
+
score += p2c_att / scale.to(dtype=p2c_att.dtype)
|
836 |
+
|
837 |
+
return score
|
838 |
+
|
839 |
+
|
840 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaEmbeddings with DebertaLayerNorm->LayerNorm
|
841 |
+
class DebertaV2Embeddings(nn.Module):
|
842 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
843 |
+
|
844 |
+
def __init__(self, config):
|
845 |
+
super().__init__()
|
846 |
+
pad_token_id = getattr(config, "pad_token_id", 0)
|
847 |
+
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
|
848 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)
|
849 |
+
|
850 |
+
self.position_biased_input = getattr(config, "position_biased_input", True)
|
851 |
+
if not self.position_biased_input:
|
852 |
+
self.position_embeddings = None
|
853 |
+
else:
|
854 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
|
855 |
+
|
856 |
+
if config.type_vocab_size > 0:
|
857 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
|
858 |
+
|
859 |
+
if self.embedding_size != config.hidden_size:
|
860 |
+
self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
|
861 |
+
self.LayerNorm = LayerNorm(config.hidden_size, config.layer_norm_eps)
|
862 |
+
self.dropout = StableDropout(config.hidden_dropout_prob)
|
863 |
+
self.config = config
|
864 |
+
|
865 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
866 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
867 |
+
|
868 |
+
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None):
|
869 |
+
if input_ids is not None:
|
870 |
+
input_shape = input_ids.size()
|
871 |
+
else:
|
872 |
+
input_shape = inputs_embeds.size()[:-1]
|
873 |
+
|
874 |
+
seq_length = input_shape[1]
|
875 |
+
|
876 |
+
if position_ids is None:
|
877 |
+
position_ids = self.position_ids[:, :seq_length]
|
878 |
+
|
879 |
+
if token_type_ids is None:
|
880 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
881 |
+
|
882 |
+
if inputs_embeds is None:
|
883 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
884 |
+
|
885 |
+
if self.position_embeddings is not None:
|
886 |
+
position_embeddings = self.position_embeddings(position_ids.long())
|
887 |
+
else:
|
888 |
+
position_embeddings = torch.zeros_like(inputs_embeds)
|
889 |
+
|
890 |
+
embeddings = inputs_embeds
|
891 |
+
if self.position_biased_input:
|
892 |
+
embeddings += position_embeddings
|
893 |
+
if self.config.type_vocab_size > 0:
|
894 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
895 |
+
embeddings += token_type_embeddings
|
896 |
+
|
897 |
+
if self.embedding_size != self.config.hidden_size:
|
898 |
+
embeddings = self.embed_proj(embeddings)
|
899 |
+
|
900 |
+
embeddings = self.LayerNorm(embeddings)
|
901 |
+
|
902 |
+
if mask is not None:
|
903 |
+
if mask.dim() != embeddings.dim():
|
904 |
+
if mask.dim() == 4:
|
905 |
+
mask = mask.squeeze(1).squeeze(1)
|
906 |
+
mask = mask.unsqueeze(2)
|
907 |
+
mask = mask.to(embeddings.dtype)
|
908 |
+
|
909 |
+
embeddings = embeddings * mask
|
910 |
+
|
911 |
+
embeddings = self.dropout(embeddings)
|
912 |
+
return embeddings
|
913 |
+
|
914 |
+
|
915 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaPreTrainedModel with Deberta->DebertaV2
|
916 |
+
class DebertaV2PreTrainedModel(PreTrainedModel):
|
917 |
+
"""
|
918 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
919 |
+
models.
|
920 |
+
"""
|
921 |
+
|
922 |
+
config_class = DebertaV2Config
|
923 |
+
base_model_prefix = "deberta"
|
924 |
+
_keys_to_ignore_on_load_missing = ["position_ids"]
|
925 |
+
_keys_to_ignore_on_load_unexpected = ["position_embeddings"]
|
926 |
+
supports_gradient_checkpointing = True
|
927 |
+
|
928 |
+
def _init_weights(self, module):
|
929 |
+
"""Initialize the weights."""
|
930 |
+
if isinstance(module, nn.Linear):
|
931 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
932 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
933 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
934 |
+
if module.bias is not None:
|
935 |
+
module.bias.data.zero_()
|
936 |
+
elif isinstance(module, nn.Embedding):
|
937 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
938 |
+
if module.padding_idx is not None:
|
939 |
+
module.weight.data[module.padding_idx].zero_()
|
940 |
+
|
941 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
942 |
+
if isinstance(module, DebertaV2Encoder):
|
943 |
+
module.gradient_checkpointing = value
|
944 |
+
|
945 |
+
|
946 |
+
DEBERTA_START_DOCSTRING = r"""
|
947 |
+
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled
|
948 |
+
Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build
|
949 |
+
on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
|
950 |
+
improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
|
951 |
+
|
952 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
953 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
954 |
+
and behavior.
|
955 |
+
|
956 |
+
|
957 |
+
Parameters:
|
958 |
+
config ([`DebertaV2Config`]): Model configuration class with all the parameters of the model.
|
959 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
960 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
961 |
+
"""
|
962 |
+
|
963 |
+
DEBERTA_INPUTS_DOCSTRING = r"""
|
964 |
+
Args:
|
965 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
966 |
+
Indices of input sequence tokens in the vocabulary.
|
967 |
+
|
968 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
969 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
970 |
+
|
971 |
+
[What are input IDs?](../glossary#input-ids)
|
972 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
973 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
974 |
+
|
975 |
+
- 1 for tokens that are **not masked**,
|
976 |
+
- 0 for tokens that are **masked**.
|
977 |
+
|
978 |
+
[What are attention masks?](../glossary#attention-mask)
|
979 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
980 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
981 |
+
1]`:
|
982 |
+
|
983 |
+
- 0 corresponds to a *sentence A* token,
|
984 |
+
- 1 corresponds to a *sentence B* token.
|
985 |
+
|
986 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
987 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
988 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
989 |
+
config.max_position_embeddings - 1]`.
|
990 |
+
|
991 |
+
[What are position IDs?](../glossary#position-ids)
|
992 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
993 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
994 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
995 |
+
model's internal embedding lookup matrix.
|
996 |
+
output_attentions (`bool`, *optional*):
|
997 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
998 |
+
tensors for more detail.
|
999 |
+
output_hidden_states (`bool`, *optional*):
|
1000 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1001 |
+
more detail.
|
1002 |
+
return_dict (`bool`, *optional*):
|
1003 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1004 |
+
"""
|
1005 |
+
|
1006 |
+
|
1007 |
+
@add_start_docstrings(
|
1008 |
+
"The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
|
1009 |
+
DEBERTA_START_DOCSTRING,
|
1010 |
+
)
|
1011 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaModel with Deberta->DebertaV2
|
1012 |
+
class DebertaV2Model(DebertaV2PreTrainedModel):
|
1013 |
+
def __init__(self, config):
|
1014 |
+
super().__init__(config)
|
1015 |
+
|
1016 |
+
self.embeddings = DebertaV2Embeddings(config)
|
1017 |
+
self.encoder = DebertaV2Encoder(config)
|
1018 |
+
self.z_steps = 0
|
1019 |
+
self.config = config
|
1020 |
+
# Initialize weights and apply final processing
|
1021 |
+
self.post_init()
|
1022 |
+
|
1023 |
+
def get_input_embeddings(self):
|
1024 |
+
return self.embeddings.word_embeddings
|
1025 |
+
|
1026 |
+
def set_input_embeddings(self, new_embeddings):
|
1027 |
+
self.embeddings.word_embeddings = new_embeddings
|
1028 |
+
|
1029 |
+
def _prune_heads(self, heads_to_prune):
|
1030 |
+
"""
|
1031 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1032 |
+
class PreTrainedModel
|
1033 |
+
"""
|
1034 |
+
raise NotImplementedError("The prune function is not implemented in DeBERTa model.")
|
1035 |
+
|
1036 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1037 |
+
@add_code_sample_docstrings(
|
1038 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1039 |
+
output_type=BaseModelOutput,
|
1040 |
+
config_class=_CONFIG_FOR_DOC,
|
1041 |
+
)
|
1042 |
+
def forward(
|
1043 |
+
self,
|
1044 |
+
input_ids: Optional[torch.Tensor] = None,
|
1045 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1046 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1047 |
+
position_ids: Optional[torch.Tensor] = None,
|
1048 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1049 |
+
output_attentions: Optional[bool] = None,
|
1050 |
+
output_hidden_states: Optional[bool] = None,
|
1051 |
+
return_dict: Optional[bool] = None,
|
1052 |
+
) -> Union[Tuple, BaseModelOutput]:
|
1053 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1054 |
+
output_hidden_states = (
|
1055 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1056 |
+
)
|
1057 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1058 |
+
|
1059 |
+
if input_ids is not None and inputs_embeds is not None:
|
1060 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1061 |
+
elif input_ids is not None:
|
1062 |
+
input_shape = input_ids.size()
|
1063 |
+
elif inputs_embeds is not None:
|
1064 |
+
input_shape = inputs_embeds.size()[:-1]
|
1065 |
+
else:
|
1066 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1067 |
+
|
1068 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1069 |
+
|
1070 |
+
if attention_mask is None:
|
1071 |
+
attention_mask = torch.ones(input_shape, device=device)
|
1072 |
+
if token_type_ids is None:
|
1073 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
1074 |
+
|
1075 |
+
embedding_output = self.embeddings(
|
1076 |
+
input_ids=input_ids,
|
1077 |
+
token_type_ids=token_type_ids,
|
1078 |
+
position_ids=position_ids,
|
1079 |
+
mask=attention_mask,
|
1080 |
+
inputs_embeds=inputs_embeds,
|
1081 |
+
)
|
1082 |
+
|
1083 |
+
encoder_outputs = self.encoder(
|
1084 |
+
embedding_output,
|
1085 |
+
attention_mask,
|
1086 |
+
output_hidden_states=True,
|
1087 |
+
output_attentions=output_attentions,
|
1088 |
+
return_dict=return_dict,
|
1089 |
+
)
|
1090 |
+
encoded_layers = encoder_outputs[1]
|
1091 |
+
|
1092 |
+
if self.z_steps > 1:
|
1093 |
+
hidden_states = encoded_layers[-2]
|
1094 |
+
layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
|
1095 |
+
query_states = encoded_layers[-1]
|
1096 |
+
rel_embeddings = self.encoder.get_rel_embedding()
|
1097 |
+
attention_mask = self.encoder.get_attention_mask(attention_mask)
|
1098 |
+
rel_pos = self.encoder.get_rel_pos(embedding_output)
|
1099 |
+
for layer in layers[1:]:
|
1100 |
+
query_states = layer(
|
1101 |
+
hidden_states,
|
1102 |
+
attention_mask,
|
1103 |
+
output_attentions=False,
|
1104 |
+
query_states=query_states,
|
1105 |
+
relative_pos=rel_pos,
|
1106 |
+
rel_embeddings=rel_embeddings,
|
1107 |
+
)
|
1108 |
+
encoded_layers.append(query_states)
|
1109 |
+
|
1110 |
+
sequence_output = encoded_layers[-1]
|
1111 |
+
|
1112 |
+
if not return_dict:
|
1113 |
+
return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]
|
1114 |
+
|
1115 |
+
return BaseModelOutput(
|
1116 |
+
last_hidden_state=sequence_output,
|
1117 |
+
hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
|
1118 |
+
attentions=encoder_outputs.attentions,
|
1119 |
+
)
|
1120 |
+
|
1121 |
+
|
1122 |
+
@add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
|
1123 |
+
class DebertaV2ForMaskedLM(DebertaV2PreTrainedModel):
|
1124 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1125 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
1126 |
+
|
1127 |
+
def __init__(self, config):
|
1128 |
+
super().__init__(config)
|
1129 |
+
|
1130 |
+
self.deberta = DebertaV2Model(config)
|
1131 |
+
self.cls = DebertaV2OnlyMLMHead(config)
|
1132 |
+
|
1133 |
+
# Initialize weights and apply final processing
|
1134 |
+
self.post_init()
|
1135 |
+
|
1136 |
+
def get_output_embeddings(self):
|
1137 |
+
return self.cls.predictions.decoder
|
1138 |
+
|
1139 |
+
def set_output_embeddings(self, new_embeddings):
|
1140 |
+
self.cls.predictions.decoder = new_embeddings
|
1141 |
+
|
1142 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1143 |
+
@add_code_sample_docstrings(
|
1144 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1145 |
+
output_type=MaskedLMOutput,
|
1146 |
+
config_class=_CONFIG_FOR_DOC,
|
1147 |
+
mask="[MASK]",
|
1148 |
+
)
|
1149 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaForMaskedLM.forward with Deberta->DebertaV2
|
1150 |
+
def forward(
|
1151 |
+
self,
|
1152 |
+
input_ids: Optional[torch.Tensor] = None,
|
1153 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1154 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1155 |
+
position_ids: Optional[torch.Tensor] = None,
|
1156 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1157 |
+
labels: Optional[torch.Tensor] = None,
|
1158 |
+
output_attentions: Optional[bool] = None,
|
1159 |
+
output_hidden_states: Optional[bool] = None,
|
1160 |
+
return_dict: Optional[bool] = None,
|
1161 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
1162 |
+
r"""
|
1163 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1164 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1165 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1166 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1167 |
+
"""
|
1168 |
+
|
1169 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1170 |
+
|
1171 |
+
outputs = self.deberta(
|
1172 |
+
input_ids,
|
1173 |
+
attention_mask=attention_mask,
|
1174 |
+
token_type_ids=token_type_ids,
|
1175 |
+
position_ids=position_ids,
|
1176 |
+
inputs_embeds=inputs_embeds,
|
1177 |
+
output_attentions=output_attentions,
|
1178 |
+
output_hidden_states=output_hidden_states,
|
1179 |
+
return_dict=return_dict,
|
1180 |
+
)
|
1181 |
+
|
1182 |
+
sequence_output = outputs[0]
|
1183 |
+
prediction_scores = self.cls(sequence_output)
|
1184 |
+
|
1185 |
+
masked_lm_loss = None
|
1186 |
+
if labels is not None:
|
1187 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1188 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1189 |
+
|
1190 |
+
if not return_dict:
|
1191 |
+
output = (prediction_scores,) + outputs[1:]
|
1192 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1193 |
+
|
1194 |
+
return MaskedLMOutput(
|
1195 |
+
loss=masked_lm_loss,
|
1196 |
+
logits=prediction_scores,
|
1197 |
+
hidden_states=outputs.hidden_states,
|
1198 |
+
attentions=outputs.attentions,
|
1199 |
+
)
|
1200 |
+
|
1201 |
+
|
1202 |
+
# copied from transformers.models.bert.BertPredictionHeadTransform with bert -> deberta
|
1203 |
+
class DebertaV2PredictionHeadTransform(nn.Module):
|
1204 |
+
def __init__(self, config):
|
1205 |
+
super().__init__()
|
1206 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1207 |
+
if isinstance(config.hidden_act, str):
|
1208 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
1209 |
+
else:
|
1210 |
+
self.transform_act_fn = config.hidden_act
|
1211 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1212 |
+
|
1213 |
+
def forward(self, hidden_states):
|
1214 |
+
hidden_states = self.dense(hidden_states)
|
1215 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
1216 |
+
hidden_states = self.LayerNorm(hidden_states)
|
1217 |
+
return hidden_states
|
1218 |
+
|
1219 |
+
|
1220 |
+
# copied from transformers.models.bert.BertLMPredictionHead with bert -> deberta
|
1221 |
+
class DebertaV2LMPredictionHead(nn.Module):
|
1222 |
+
def __init__(self, config):
|
1223 |
+
super().__init__()
|
1224 |
+
self.transform = DebertaV2PredictionHeadTransform(config)
|
1225 |
+
|
1226 |
+
# The output weights are the same as the input embeddings, but there is
|
1227 |
+
# an output-only bias for each token.
|
1228 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1229 |
+
|
1230 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
1231 |
+
|
1232 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
1233 |
+
self.decoder.bias = self.bias
|
1234 |
+
|
1235 |
+
def forward(self, hidden_states):
|
1236 |
+
hidden_states = self.transform(hidden_states)
|
1237 |
+
hidden_states = self.decoder(hidden_states)
|
1238 |
+
return hidden_states
|
1239 |
+
|
1240 |
+
|
1241 |
+
# copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta
|
1242 |
+
class DebertaV2OnlyMLMHead(nn.Module):
|
1243 |
+
def __init__(self, config):
|
1244 |
+
super().__init__()
|
1245 |
+
self.predictions = DebertaV2LMPredictionHead(config)
|
1246 |
+
|
1247 |
+
def forward(self, sequence_output):
|
1248 |
+
prediction_scores = self.predictions(sequence_output)
|
1249 |
+
return prediction_scores
|
1250 |
+
|
1251 |
+
|
1252 |
+
@add_start_docstrings(
|
1253 |
+
"""
|
1254 |
+
DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1255 |
+
pooled output) e.g. for GLUE tasks.
|
1256 |
+
""",
|
1257 |
+
DEBERTA_START_DOCSTRING,
|
1258 |
+
)
|
1259 |
+
class DebertaV2ForSequenceClassification(DebertaV2PreTrainedModel):
|
1260 |
+
def __init__(self, config):
|
1261 |
+
super().__init__(config)
|
1262 |
+
|
1263 |
+
num_labels = getattr(config, "num_labels", 2)
|
1264 |
+
self.num_labels = num_labels
|
1265 |
+
|
1266 |
+
self.deberta = DebertaV2Model(config)
|
1267 |
+
self.pooler = ContextPooler(config)
|
1268 |
+
output_dim = self.pooler.output_dim
|
1269 |
+
|
1270 |
+
self.classifier = nn.Linear(output_dim, num_labels)
|
1271 |
+
drop_out = getattr(config, "cls_dropout", None)
|
1272 |
+
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
1273 |
+
self.dropout = StableDropout(drop_out)
|
1274 |
+
|
1275 |
+
# Initialize weights and apply final processing
|
1276 |
+
self.post_init()
|
1277 |
+
|
1278 |
+
def get_input_embeddings(self):
|
1279 |
+
return self.deberta.get_input_embeddings()
|
1280 |
+
|
1281 |
+
def set_input_embeddings(self, new_embeddings):
|
1282 |
+
self.deberta.set_input_embeddings(new_embeddings)
|
1283 |
+
|
1284 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1285 |
+
@add_code_sample_docstrings(
|
1286 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1287 |
+
output_type=SequenceClassifierOutput,
|
1288 |
+
config_class=_CONFIG_FOR_DOC,
|
1289 |
+
)
|
1290 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaForSequenceClassification.forward with Deberta->DebertaV2
|
1291 |
+
def forward(
|
1292 |
+
self,
|
1293 |
+
input_ids: Optional[torch.Tensor] = None,
|
1294 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1295 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1296 |
+
position_ids: Optional[torch.Tensor] = None,
|
1297 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1298 |
+
labels: Optional[torch.Tensor] = None,
|
1299 |
+
output_attentions: Optional[bool] = None,
|
1300 |
+
output_hidden_states: Optional[bool] = None,
|
1301 |
+
return_dict: Optional[bool] = None,
|
1302 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
1303 |
+
r"""
|
1304 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1305 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1306 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1307 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1308 |
+
"""
|
1309 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1310 |
+
|
1311 |
+
outputs = self.deberta(
|
1312 |
+
input_ids,
|
1313 |
+
token_type_ids=token_type_ids,
|
1314 |
+
attention_mask=attention_mask,
|
1315 |
+
position_ids=position_ids,
|
1316 |
+
inputs_embeds=inputs_embeds,
|
1317 |
+
output_attentions=output_attentions,
|
1318 |
+
output_hidden_states=output_hidden_states,
|
1319 |
+
return_dict=return_dict,
|
1320 |
+
)
|
1321 |
+
|
1322 |
+
encoder_layer = outputs[0]
|
1323 |
+
pooled_output = self.pooler(encoder_layer)
|
1324 |
+
pooled_output = self.dropout(pooled_output)
|
1325 |
+
logits = self.classifier(pooled_output)
|
1326 |
+
|
1327 |
+
loss = None
|
1328 |
+
if labels is not None:
|
1329 |
+
if self.config.problem_type is None:
|
1330 |
+
if self.num_labels == 1:
|
1331 |
+
# regression task
|
1332 |
+
loss_fn = nn.MSELoss()
|
1333 |
+
logits = logits.view(-1).to(labels.dtype)
|
1334 |
+
loss = loss_fn(logits, labels.view(-1))
|
1335 |
+
elif labels.dim() == 1 or labels.size(-1) == 1:
|
1336 |
+
label_index = (labels >= 0).nonzero()
|
1337 |
+
labels = labels.long()
|
1338 |
+
if label_index.size(0) > 0:
|
1339 |
+
labeled_logits = torch.gather(
|
1340 |
+
logits, 0, label_index.expand(label_index.size(0), logits.size(1))
|
1341 |
+
)
|
1342 |
+
labels = torch.gather(labels, 0, label_index.view(-1))
|
1343 |
+
loss_fct = CrossEntropyLoss()
|
1344 |
+
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
|
1345 |
+
else:
|
1346 |
+
loss = torch.tensor(0).to(logits)
|
1347 |
+
else:
|
1348 |
+
log_softmax = nn.LogSoftmax(-1)
|
1349 |
+
loss = -((log_softmax(logits) * labels).sum(-1)).mean()
|
1350 |
+
elif self.config.problem_type == "regression":
|
1351 |
+
loss_fct = MSELoss()
|
1352 |
+
if self.num_labels == 1:
|
1353 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1354 |
+
else:
|
1355 |
+
loss = loss_fct(logits, labels)
|
1356 |
+
elif self.config.problem_type == "single_label_classification":
|
1357 |
+
loss_fct = CrossEntropyLoss()
|
1358 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1359 |
+
elif self.config.problem_type == "multi_label_classification":
|
1360 |
+
loss_fct = BCEWithLogitsLoss()
|
1361 |
+
loss = loss_fct(logits, labels)
|
1362 |
+
if not return_dict:
|
1363 |
+
output = (logits,) + outputs[1:]
|
1364 |
+
return ((loss,) + output) if loss is not None else output
|
1365 |
+
|
1366 |
+
return SequenceClassifierOutput(
|
1367 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
1368 |
+
)
|
1369 |
+
|
1370 |
+
|
1371 |
+
@add_start_docstrings(
|
1372 |
+
"""
|
1373 |
+
DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1374 |
+
Named-Entity-Recognition (NER) tasks.
|
1375 |
+
""",
|
1376 |
+
DEBERTA_START_DOCSTRING,
|
1377 |
+
)
|
1378 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaForTokenClassification with Deberta->DebertaV2
|
1379 |
+
class DebertaV2ForTokenClassification(DebertaV2PreTrainedModel):
|
1380 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1381 |
+
|
1382 |
+
def __init__(self, config):
|
1383 |
+
super().__init__(config)
|
1384 |
+
self.num_labels = config.num_labels
|
1385 |
+
|
1386 |
+
self.deberta = DebertaV2Model(config)
|
1387 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1388 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1389 |
+
|
1390 |
+
# Initialize weights and apply final processing
|
1391 |
+
self.post_init()
|
1392 |
+
|
1393 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1394 |
+
@add_code_sample_docstrings(
|
1395 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1396 |
+
output_type=TokenClassifierOutput,
|
1397 |
+
config_class=_CONFIG_FOR_DOC,
|
1398 |
+
)
|
1399 |
+
def forward(
|
1400 |
+
self,
|
1401 |
+
input_ids: Optional[torch.Tensor] = None,
|
1402 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1403 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1404 |
+
position_ids: Optional[torch.Tensor] = None,
|
1405 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1406 |
+
labels: Optional[torch.Tensor] = None,
|
1407 |
+
output_attentions: Optional[bool] = None,
|
1408 |
+
output_hidden_states: Optional[bool] = None,
|
1409 |
+
return_dict: Optional[bool] = None,
|
1410 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1411 |
+
r"""
|
1412 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1413 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1414 |
+
"""
|
1415 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1416 |
+
|
1417 |
+
outputs = self.deberta(
|
1418 |
+
input_ids,
|
1419 |
+
attention_mask=attention_mask,
|
1420 |
+
token_type_ids=token_type_ids,
|
1421 |
+
position_ids=position_ids,
|
1422 |
+
inputs_embeds=inputs_embeds,
|
1423 |
+
output_attentions=output_attentions,
|
1424 |
+
output_hidden_states=output_hidden_states,
|
1425 |
+
return_dict=return_dict,
|
1426 |
+
)
|
1427 |
+
|
1428 |
+
sequence_output = outputs[0]
|
1429 |
+
|
1430 |
+
sequence_output = self.dropout(sequence_output)
|
1431 |
+
logits = self.classifier(sequence_output)
|
1432 |
+
|
1433 |
+
loss = None
|
1434 |
+
if labels is not None:
|
1435 |
+
loss_fct = CrossEntropyLoss()
|
1436 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1437 |
+
|
1438 |
+
if not return_dict:
|
1439 |
+
output = (logits,) + outputs[1:]
|
1440 |
+
return ((loss,) + output) if loss is not None else output
|
1441 |
+
|
1442 |
+
return TokenClassifierOutput(
|
1443 |
+
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
1444 |
+
)
|
1445 |
+
|
1446 |
+
class TokenClassifierRegressionOutput(ModelOutput):
|
1447 |
+
"""
|
1448 |
+
Base class for outputs of token classification models.
|
1449 |
+
|
1450 |
+
Args:
|
1451 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
|
1452 |
+
Classification loss.
|
1453 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
|
1454 |
+
Classification scores (before SoftMax).
|
1455 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
1456 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
1457 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
1458 |
+
|
1459 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
1460 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
1461 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
1462 |
+
sequence_length)`.
|
1463 |
+
|
1464 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
1465 |
+
heads.
|
1466 |
+
"""
|
1467 |
+
|
1468 |
+
loss: Optional[torch.FloatTensor] = None
|
1469 |
+
logits: torch.FloatTensor = None
|
1470 |
+
values: torch.FloatTensor = None
|
1471 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
1472 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
1473 |
+
|
1474 |
+
class DebertaV2ForTokenClassificationRegression(DebertaV2PreTrainedModel):
|
1475 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1476 |
+
|
1477 |
+
def __init__(self, config):
|
1478 |
+
super().__init__(config)
|
1479 |
+
self.num_labels = 4
|
1480 |
+
|
1481 |
+
self.deberta = DebertaV2Model(config)
|
1482 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1483 |
+
|
1484 |
+
self.hidden1 = nn.Linear(config.hidden_size, config.hidden_size)
|
1485 |
+
self.classifier = nn.Linear(config.hidden_size, self.num_labels)
|
1486 |
+
|
1487 |
+
self.hidden2 = nn.Linear(config.hidden_size, config.hidden_size)
|
1488 |
+
self.regressor = nn.Linear(config.hidden_size, 1)
|
1489 |
+
|
1490 |
+
# Initialize weights and apply final processing
|
1491 |
+
self.post_init()
|
1492 |
+
|
1493 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1494 |
+
@add_code_sample_docstrings(
|
1495 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1496 |
+
output_type=TokenClassifierOutput,
|
1497 |
+
config_class=_CONFIG_FOR_DOC,
|
1498 |
+
)
|
1499 |
+
def forward(
|
1500 |
+
self,
|
1501 |
+
input_ids: Optional[torch.Tensor] = None,
|
1502 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1503 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1504 |
+
position_ids: Optional[torch.Tensor] = None,
|
1505 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1506 |
+
labels: Optional[torch.Tensor] = None,
|
1507 |
+
output_attentions: Optional[bool] = None,
|
1508 |
+
output_hidden_states: Optional[bool] = None,
|
1509 |
+
return_dict: Optional[bool] = None,
|
1510 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1511 |
+
r"""
|
1512 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1513 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1514 |
+
"""
|
1515 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1516 |
+
|
1517 |
+
outputs = self.deberta(
|
1518 |
+
input_ids,
|
1519 |
+
attention_mask=attention_mask,
|
1520 |
+
token_type_ids=token_type_ids,
|
1521 |
+
position_ids=position_ids,
|
1522 |
+
inputs_embeds=inputs_embeds,
|
1523 |
+
output_attentions=output_attentions,
|
1524 |
+
output_hidden_states=output_hidden_states,
|
1525 |
+
return_dict=return_dict,
|
1526 |
+
)
|
1527 |
+
|
1528 |
+
sequence_output = outputs[0]
|
1529 |
+
|
1530 |
+
sequence_output = self.dropout(sequence_output)
|
1531 |
+
|
1532 |
+
logits = self.classifier(self.hidden1(sequence_output))
|
1533 |
+
values = self.regressor(self.hidden2(sequence_output))
|
1534 |
+
|
1535 |
+
loss = None
|
1536 |
+
if labels is not None:
|
1537 |
+
loss_fct = CrossEntropyLoss()
|
1538 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1539 |
+
|
1540 |
+
if not return_dict:
|
1541 |
+
output = (logits,) + outputs[1:]
|
1542 |
+
return ((loss,) + output) if loss is not None else output
|
1543 |
+
|
1544 |
+
return TokenClassifierRegressionOutput(
|
1545 |
+
loss=loss, logits=logits, values=values, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
1546 |
+
)
|
1547 |
+
|
1548 |
+
|
1549 |
+
@add_start_docstrings(
|
1550 |
+
"""
|
1551 |
+
DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1552 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1553 |
+
""",
|
1554 |
+
DEBERTA_START_DOCSTRING,
|
1555 |
+
)
|
1556 |
+
class DebertaV2ForQuestionAnswering(DebertaV2PreTrainedModel):
|
1557 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1558 |
+
|
1559 |
+
def __init__(self, config):
|
1560 |
+
super().__init__(config)
|
1561 |
+
self.num_labels = config.num_labels
|
1562 |
+
|
1563 |
+
self.deberta = DebertaV2Model(config)
|
1564 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1565 |
+
|
1566 |
+
# Initialize weights and apply final processing
|
1567 |
+
self.post_init()
|
1568 |
+
|
1569 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1570 |
+
@add_code_sample_docstrings(
|
1571 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1572 |
+
output_type=QuestionAnsweringModelOutput,
|
1573 |
+
config_class=_CONFIG_FOR_DOC,
|
1574 |
+
qa_target_start_index=_QA_TARGET_START_INDEX,
|
1575 |
+
qa_target_end_index=_QA_TARGET_END_INDEX,
|
1576 |
+
)
|
1577 |
+
# Copied from transformers.models.deberta.modeling_deberta.DebertaForQuestionAnswering.forward with Deberta->DebertaV2
|
1578 |
+
def forward(
|
1579 |
+
self,
|
1580 |
+
input_ids: Optional[torch.Tensor] = None,
|
1581 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1582 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1583 |
+
position_ids: Optional[torch.Tensor] = None,
|
1584 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1585 |
+
start_positions: Optional[torch.Tensor] = None,
|
1586 |
+
end_positions: Optional[torch.Tensor] = None,
|
1587 |
+
output_attentions: Optional[bool] = None,
|
1588 |
+
output_hidden_states: Optional[bool] = None,
|
1589 |
+
return_dict: Optional[bool] = None,
|
1590 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1591 |
+
r"""
|
1592 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1593 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1594 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1595 |
+
are not taken into account for computing the loss.
|
1596 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1597 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1598 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1599 |
+
are not taken into account for computing the loss.
|
1600 |
+
"""
|
1601 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1602 |
+
|
1603 |
+
outputs = self.deberta(
|
1604 |
+
input_ids,
|
1605 |
+
attention_mask=attention_mask,
|
1606 |
+
token_type_ids=token_type_ids,
|
1607 |
+
position_ids=position_ids,
|
1608 |
+
inputs_embeds=inputs_embeds,
|
1609 |
+
output_attentions=output_attentions,
|
1610 |
+
output_hidden_states=output_hidden_states,
|
1611 |
+
return_dict=return_dict,
|
1612 |
+
)
|
1613 |
+
|
1614 |
+
sequence_output = outputs[0]
|
1615 |
+
|
1616 |
+
logits = self.qa_outputs(sequence_output)
|
1617 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1618 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1619 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1620 |
+
|
1621 |
+
total_loss = None
|
1622 |
+
if start_positions is not None and end_positions is not None:
|
1623 |
+
# If we are on multi-GPU, split add a dimension
|
1624 |
+
if len(start_positions.size()) > 1:
|
1625 |
+
start_positions = start_positions.squeeze(-1)
|
1626 |
+
if len(end_positions.size()) > 1:
|
1627 |
+
end_positions = end_positions.squeeze(-1)
|
1628 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1629 |
+
ignored_index = start_logits.size(1)
|
1630 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1631 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1632 |
+
|
1633 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1634 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1635 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1636 |
+
total_loss = (start_loss + end_loss) / 2
|
1637 |
+
|
1638 |
+
if not return_dict:
|
1639 |
+
output = (start_logits, end_logits) + outputs[1:]
|
1640 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1641 |
+
|
1642 |
+
return QuestionAnsweringModelOutput(
|
1643 |
+
loss=total_loss,
|
1644 |
+
start_logits=start_logits,
|
1645 |
+
end_logits=end_logits,
|
1646 |
+
hidden_states=outputs.hidden_states,
|
1647 |
+
attentions=outputs.attentions,
|
1648 |
+
)
|
1649 |
+
|
1650 |
+
|
1651 |
+
@add_start_docstrings(
|
1652 |
+
"""
|
1653 |
+
DeBERTa Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1654 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1655 |
+
""",
|
1656 |
+
DEBERTA_START_DOCSTRING,
|
1657 |
+
)
|
1658 |
+
class DebertaV2ForMultipleChoice(DebertaV2PreTrainedModel):
|
1659 |
+
def __init__(self, config):
|
1660 |
+
super().__init__(config)
|
1661 |
+
|
1662 |
+
num_labels = getattr(config, "num_labels", 2)
|
1663 |
+
self.num_labels = num_labels
|
1664 |
+
|
1665 |
+
self.deberta = DebertaV2Model(config)
|
1666 |
+
self.pooler = ContextPooler(config)
|
1667 |
+
output_dim = self.pooler.output_dim
|
1668 |
+
|
1669 |
+
self.classifier = nn.Linear(output_dim, 1)
|
1670 |
+
drop_out = getattr(config, "cls_dropout", None)
|
1671 |
+
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
|
1672 |
+
self.dropout = StableDropout(drop_out)
|
1673 |
+
|
1674 |
+
self.init_weights()
|
1675 |
+
|
1676 |
+
def get_input_embeddings(self):
|
1677 |
+
return self.deberta.get_input_embeddings()
|
1678 |
+
|
1679 |
+
def set_input_embeddings(self, new_embeddings):
|
1680 |
+
self.deberta.set_input_embeddings(new_embeddings)
|
1681 |
+
|
1682 |
+
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1683 |
+
@add_code_sample_docstrings(
|
1684 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1685 |
+
output_type=MultipleChoiceModelOutput,
|
1686 |
+
config_class=_CONFIG_FOR_DOC,
|
1687 |
+
)
|
1688 |
+
def forward(
|
1689 |
+
self,
|
1690 |
+
input_ids: Optional[torch.Tensor] = None,
|
1691 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1692 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1693 |
+
position_ids: Optional[torch.Tensor] = None,
|
1694 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1695 |
+
labels: Optional[torch.Tensor] = None,
|
1696 |
+
output_attentions: Optional[bool] = None,
|
1697 |
+
output_hidden_states: Optional[bool] = None,
|
1698 |
+
return_dict: Optional[bool] = None,
|
1699 |
+
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
1700 |
+
r"""
|
1701 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1702 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1703 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1704 |
+
`input_ids` above)
|
1705 |
+
"""
|
1706 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1707 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1708 |
+
|
1709 |
+
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1710 |
+
flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1711 |
+
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1712 |
+
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1713 |
+
flat_inputs_embeds = (
|
1714 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1715 |
+
if inputs_embeds is not None
|
1716 |
+
else None
|
1717 |
+
)
|
1718 |
+
|
1719 |
+
outputs = self.deberta(
|
1720 |
+
flat_input_ids,
|
1721 |
+
position_ids=flat_position_ids,
|
1722 |
+
token_type_ids=flat_token_type_ids,
|
1723 |
+
attention_mask=flat_attention_mask,
|
1724 |
+
inputs_embeds=flat_inputs_embeds,
|
1725 |
+
output_attentions=output_attentions,
|
1726 |
+
output_hidden_states=output_hidden_states,
|
1727 |
+
return_dict=return_dict,
|
1728 |
+
)
|
1729 |
+
|
1730 |
+
encoder_layer = outputs[0]
|
1731 |
+
pooled_output = self.pooler(encoder_layer)
|
1732 |
+
pooled_output = self.dropout(pooled_output)
|
1733 |
+
logits = self.classifier(pooled_output)
|
1734 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1735 |
+
|
1736 |
+
loss = None
|
1737 |
+
if labels is not None:
|
1738 |
+
loss_fct = CrossEntropyLoss()
|
1739 |
+
loss = loss_fct(reshaped_logits, labels)
|
1740 |
+
|
1741 |
+
if not return_dict:
|
1742 |
+
output = (reshaped_logits,) + outputs[1:]
|
1743 |
+
return ((loss,) + output) if loss is not None else output
|
1744 |
+
|
1745 |
+
return MultipleChoiceModelOutput(
|
1746 |
+
loss=loss,
|
1747 |
+
logits=reshaped_logits,
|
1748 |
+
hidden_states=outputs.hidden_states,
|
1749 |
+
attentions=outputs.attentions,
|
1750 |
+
)
|
.ipynb_checkpoints/models-checkpoint.py
CHANGED
@@ -28,711 +28,713 @@ from diffusers import AutoencoderKL as DiffuserAutoencoderKL
|
|
28 |
from layers.layers import chord_tokenizer, beat_tokenizer, Chord_Embedding, Beat_Embedding, Music_PositionalEncoding, Fundamental_Music_Embedding
|
29 |
|
30 |
def build_pretrained_models(name):
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
|
58 |
class AudioDiffusion(nn.Module):
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
|
312 |
class MusicAudioDiffusion(nn.Module):
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
|
|
|
|
|
28 |
from layers.layers import chord_tokenizer, beat_tokenizer, Chord_Embedding, Beat_Embedding, Music_PositionalEncoding, Fundamental_Music_Embedding
|
29 |
|
30 |
def build_pretrained_models(name):
|
31 |
+
checkpoint = torch.load(get_metadata()[name]["path"], map_location="cpu")
|
32 |
+
scale_factor = checkpoint["state_dict"]["scale_factor"].item()
|
33 |
|
34 |
+
vae_state_dict = {k[18:]: v for k, v in checkpoint["state_dict"].items() if "first_stage_model." in k}
|
35 |
|
36 |
+
config = default_audioldm_config(name)
|
37 |
+
vae_config = config["model"]["params"]["first_stage_config"]["params"]
|
38 |
+
vae_config["scale_factor"] = scale_factor
|
39 |
|
40 |
+
vae = AutoencoderKL(**vae_config)
|
41 |
+
vae.load_state_dict(vae_state_dict)
|
42 |
|
43 |
+
fn_STFT = TacotronSTFT(
|
44 |
+
config["preprocessing"]["stft"]["filter_length"],
|
45 |
+
config["preprocessing"]["stft"]["hop_length"],
|
46 |
+
config["preprocessing"]["stft"]["win_length"],
|
47 |
+
config["preprocessing"]["mel"]["n_mel_channels"],
|
48 |
+
config["preprocessing"]["audio"]["sampling_rate"],
|
49 |
+
config["preprocessing"]["mel"]["mel_fmin"],
|
50 |
+
config["preprocessing"]["mel"]["mel_fmax"],
|
51 |
+
)
|
52 |
|
53 |
+
vae.eval()
|
54 |
+
fn_STFT.eval()
|
55 |
+
return vae, fn_STFT
|
56 |
|
57 |
|
58 |
class AudioDiffusion(nn.Module):
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
text_encoder_name,
|
62 |
+
scheduler_name,
|
63 |
+
unet_model_name=None,
|
64 |
+
unet_model_config_path=None,
|
65 |
+
snr_gamma=None,
|
66 |
+
freeze_text_encoder=True,
|
67 |
+
uncondition=False,
|
68 |
+
|
69 |
+
):
|
70 |
+
super().__init__()
|
71 |
+
|
72 |
+
assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required"
|
73 |
+
|
74 |
+
self.text_encoder_name = text_encoder_name
|
75 |
+
self.scheduler_name = scheduler_name
|
76 |
+
self.unet_model_name = unet_model_name
|
77 |
+
self.unet_model_config_path = unet_model_config_path
|
78 |
+
self.snr_gamma = snr_gamma
|
79 |
+
self.freeze_text_encoder = freeze_text_encoder
|
80 |
+
self.uncondition = uncondition
|
81 |
+
|
82 |
+
# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview
|
83 |
+
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
|
84 |
+
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
|
85 |
+
|
86 |
+
if unet_model_config_path:
|
87 |
+
unet_config = UNet2DConditionModel.load_config(unet_model_config_path)
|
88 |
+
self.unet = UNet2DConditionModel.from_config(unet_config, subfolder="unet")
|
89 |
+
self.set_from = "random"
|
90 |
+
print("UNet initialized randomly.")
|
91 |
+
else:
|
92 |
+
self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet")
|
93 |
+
self.set_from = "pre-trained"
|
94 |
+
self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4))
|
95 |
+
self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8))
|
96 |
+
print("UNet initialized from stable diffusion checkpoint.")
|
97 |
+
|
98 |
+
if "stable-diffusion" in self.text_encoder_name:
|
99 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(self.text_encoder_name, subfolder="tokenizer")
|
100 |
+
self.text_encoder = CLIPTextModel.from_pretrained(self.text_encoder_name, subfolder="text_encoder")
|
101 |
+
elif "t5" in self.text_encoder_name:
|
102 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
|
103 |
+
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name)
|
104 |
+
else:
|
105 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
|
106 |
+
self.text_encoder = AutoModel.from_pretrained(self.text_encoder_name)
|
107 |
+
|
108 |
+
def compute_snr(self, timesteps):
|
109 |
+
"""
|
110 |
+
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
|
111 |
+
"""
|
112 |
+
alphas_cumprod = self.noise_scheduler.alphas_cumprod
|
113 |
+
sqrt_alphas_cumprod = alphas_cumprod**0.5
|
114 |
+
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
|
115 |
+
|
116 |
+
# Expand the tensors.
|
117 |
+
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
|
118 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
|
119 |
+
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
|
120 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
|
121 |
+
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
|
122 |
+
|
123 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
|
124 |
+
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
|
125 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
|
126 |
+
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
|
127 |
+
|
128 |
+
# Compute SNR.
|
129 |
+
snr = (alpha / sigma) ** 2
|
130 |
+
return snr
|
131 |
+
|
132 |
+
def encode_text(self, prompt):
|
133 |
+
device = self.text_encoder.device
|
134 |
+
batch = self.tokenizer(
|
135 |
+
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
|
136 |
+
)
|
137 |
+
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
|
138 |
+
|
139 |
+
if self.freeze_text_encoder:
|
140 |
+
with torch.no_grad():
|
141 |
+
encoder_hidden_states = self.text_encoder(
|
142 |
+
input_ids=input_ids, attention_mask=attention_mask
|
143 |
+
)[0]
|
144 |
+
else:
|
145 |
+
encoder_hidden_states = self.text_encoder(
|
146 |
+
input_ids=input_ids, attention_mask=attention_mask
|
147 |
+
)[0]
|
148 |
+
|
149 |
+
boolean_encoder_mask = (attention_mask == 1).to(device)
|
150 |
+
return encoder_hidden_states, boolean_encoder_mask
|
151 |
+
|
152 |
+
def forward(self, latents, prompt, validation_mode=False):
|
153 |
+
device = self.text_encoder.device
|
154 |
+
num_train_timesteps = self.noise_scheduler.num_train_timesteps
|
155 |
+
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
|
156 |
+
|
157 |
+
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt)
|
158 |
+
|
159 |
+
if self.uncondition:
|
160 |
+
mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1]
|
161 |
+
if len(mask_indices) > 0:
|
162 |
+
encoder_hidden_states[mask_indices] = 0
|
163 |
+
|
164 |
+
bsz = latents.shape[0]
|
165 |
+
|
166 |
+
if validation_mode:
|
167 |
+
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device)
|
168 |
+
else:
|
169 |
+
# Sample a random timestep for each instance
|
170 |
+
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device)
|
171 |
+
# print('in if ', timesteps)
|
172 |
+
timesteps = timesteps.long()
|
173 |
+
# print('outside if ' , timesteps)
|
174 |
+
noise = torch.randn_like(latents)
|
175 |
+
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
|
176 |
+
|
177 |
+
# Get the target for loss depending on the prediction type
|
178 |
+
if self.noise_scheduler.config.prediction_type == "epsilon":
|
179 |
+
target = noise
|
180 |
+
elif self.noise_scheduler.config.prediction_type == "v_prediction":
|
181 |
+
target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
|
182 |
+
else:
|
183 |
+
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")
|
184 |
+
|
185 |
+
if self.set_from == "random":
|
186 |
+
model_pred = self.unet(
|
187 |
+
noisy_latents, timesteps, encoder_hidden_states,
|
188 |
+
encoder_attention_mask=boolean_encoder_mask
|
189 |
+
).sample
|
190 |
+
|
191 |
+
elif self.set_from == "pre-trained":
|
192 |
+
compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
|
193 |
+
model_pred = self.unet(
|
194 |
+
compressed_latents, timesteps, encoder_hidden_states,
|
195 |
+
encoder_attention_mask=boolean_encoder_mask
|
196 |
+
).sample
|
197 |
+
model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
|
198 |
+
|
199 |
+
if self.snr_gamma is None:
|
200 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
201 |
+
else:
|
202 |
+
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
|
203 |
+
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
|
204 |
+
snr = self.compute_snr(timesteps)
|
205 |
+
mse_loss_weights = (
|
206 |
+
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
|
207 |
+
)
|
208 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
|
209 |
+
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
|
210 |
+
loss = loss.mean()
|
211 |
+
|
212 |
+
return loss
|
213 |
+
|
214 |
+
@torch.no_grad()
|
215 |
+
def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1,
|
216 |
+
disable_progress=True):
|
217 |
+
device = self.text_encoder.device
|
218 |
+
classifier_free_guidance = guidance_scale > 1.0
|
219 |
+
batch_size = len(prompt) * num_samples_per_prompt
|
220 |
+
|
221 |
+
if classifier_free_guidance:
|
222 |
+
prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt)
|
223 |
+
else:
|
224 |
+
prompt_embeds, boolean_prompt_mask = self.encode_text(prompt)
|
225 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
226 |
+
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
|
227 |
+
|
228 |
+
inference_scheduler.set_timesteps(num_steps, device=device)
|
229 |
+
timesteps = inference_scheduler.timesteps
|
230 |
+
|
231 |
+
num_channels_latents = self.unet.in_channels
|
232 |
+
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)
|
233 |
+
|
234 |
+
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
|
235 |
+
progress_bar = tqdm(range(num_steps), disable=disable_progress)
|
236 |
+
|
237 |
+
for i, t in enumerate(timesteps):
|
238 |
+
# expand the latents if we are doing classifier free guidance
|
239 |
+
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
|
240 |
+
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
|
241 |
+
|
242 |
+
noise_pred = self.unet(
|
243 |
+
latent_model_input, t, encoder_hidden_states=prompt_embeds,
|
244 |
+
encoder_attention_mask=boolean_prompt_mask
|
245 |
+
).sample
|
246 |
+
|
247 |
+
# perform guidance
|
248 |
+
if classifier_free_guidance:
|
249 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
250 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
251 |
+
|
252 |
+
# compute the previous noisy sample x_t -> x_t-1
|
253 |
+
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
|
254 |
+
|
255 |
+
# call the callback, if provided
|
256 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
|
257 |
+
progress_bar.update(1)
|
258 |
+
|
259 |
+
if self.set_from == "pre-trained":
|
260 |
+
latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
|
261 |
+
return latents
|
262 |
+
|
263 |
+
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
|
264 |
+
shape = (batch_size, num_channels_latents, 256, 16)
|
265 |
+
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
|
266 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
267 |
+
latents = latents * inference_scheduler.init_noise_sigma
|
268 |
+
return latents
|
269 |
+
|
270 |
+
def encode_text_classifier_free(self, prompt, num_samples_per_prompt):
|
271 |
+
device = self.text_encoder.device
|
272 |
+
batch = self.tokenizer(
|
273 |
+
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
|
274 |
+
)
|
275 |
+
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
|
276 |
+
|
277 |
+
with torch.no_grad():
|
278 |
+
prompt_embeds = self.text_encoder(
|
279 |
+
input_ids=input_ids, attention_mask=attention_mask
|
280 |
+
)[0]
|
281 |
+
|
282 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
283 |
+
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
|
284 |
+
|
285 |
+
# get unconditional embeddings for classifier free guidance
|
286 |
+
uncond_tokens = [""] * len(prompt)
|
287 |
+
|
288 |
+
max_length = prompt_embeds.shape[1]
|
289 |
+
uncond_batch = self.tokenizer(
|
290 |
+
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
|
291 |
+
)
|
292 |
+
uncond_input_ids = uncond_batch.input_ids.to(device)
|
293 |
+
uncond_attention_mask = uncond_batch.attention_mask.to(device)
|
294 |
+
|
295 |
+
with torch.no_grad():
|
296 |
+
negative_prompt_embeds = self.text_encoder(
|
297 |
+
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
|
298 |
+
)[0]
|
299 |
+
|
300 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
301 |
+
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
|
302 |
+
|
303 |
+
# For classifier free guidance, we need to do two forward passes.
|
304 |
+
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
|
305 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
306 |
+
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
|
307 |
+
boolean_prompt_mask = (prompt_mask == 1).to(device)
|
308 |
+
|
309 |
+
return prompt_embeds, boolean_prompt_mask
|
310 |
+
|
311 |
|
312 |
class MusicAudioDiffusion(nn.Module):
|
313 |
+
def __init__(
|
314 |
+
self,
|
315 |
+
text_encoder_name,
|
316 |
+
scheduler_name,
|
317 |
+
unet_model_name=None,
|
318 |
+
unet_model_config_path=None,
|
319 |
+
snr_gamma=None,
|
320 |
+
freeze_text_encoder=True,
|
321 |
+
uncondition=False,
|
322 |
+
|
323 |
+
d_fme = 1024, #FME
|
324 |
+
fme_type = "se",
|
325 |
+
base = 1,
|
326 |
+
if_trainable = True,
|
327 |
+
translation_bias_type = "nd",
|
328 |
+
emb_nn = True,
|
329 |
+
d_pe = 1024, #PE
|
330 |
+
if_index = True,
|
331 |
+
if_global_timing = True,
|
332 |
+
if_modulo_timing = False,
|
333 |
+
d_beat = 1024, #Beat
|
334 |
+
d_oh_beat_type = 7,
|
335 |
+
beat_len = 50,
|
336 |
+
d_chord = 1024, #Chord
|
337 |
+
d_oh_chord_type = 12,
|
338 |
+
d_oh_inv_type = 4,
|
339 |
+
chord_len = 20,
|
340 |
+
|
341 |
+
):
|
342 |
+
super().__init__()
|
343 |
+
|
344 |
+
assert unet_model_name is not None or unet_model_config_path is not None, "Either UNet pretrain model name or a config file path is required"
|
345 |
+
|
346 |
+
self.text_encoder_name = text_encoder_name
|
347 |
+
self.scheduler_name = scheduler_name
|
348 |
+
self.unet_model_name = unet_model_name
|
349 |
+
self.unet_model_config_path = unet_model_config_path
|
350 |
+
self.snr_gamma = snr_gamma
|
351 |
+
self.freeze_text_encoder = freeze_text_encoder
|
352 |
+
self.uncondition = uncondition
|
353 |
+
|
354 |
+
# https://huggingface.co/docs/diffusers/v0.14.0/en/api/schedulers/overview
|
355 |
+
self.noise_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
|
356 |
+
self.inference_scheduler = DDPMScheduler.from_pretrained(self.scheduler_name, subfolder="scheduler")
|
357 |
+
|
358 |
+
if unet_model_config_path:
|
359 |
+
unet_config = UNet2DConditionModelMusic.load_config(unet_model_config_path)
|
360 |
+
self.unet = UNet2DConditionModelMusic.from_config(unet_config, subfolder="unet")
|
361 |
+
self.set_from = "random"
|
362 |
+
print("UNet initialized randomly.")
|
363 |
+
else:
|
364 |
+
self.unet = UNet2DConditionModel.from_pretrained(unet_model_name, subfolder="unet")
|
365 |
+
self.set_from = "pre-trained"
|
366 |
+
self.group_in = nn.Sequential(nn.Linear(8, 512), nn.Linear(512, 4))
|
367 |
+
self.group_out = nn.Sequential(nn.Linear(4, 512), nn.Linear(512, 8))
|
368 |
+
print("UNet initialized from stable diffusion checkpoint.")
|
369 |
+
|
370 |
+
if "stable-diffusion" in self.text_encoder_name:
|
371 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(self.text_encoder_name, subfolder="tokenizer")
|
372 |
+
self.text_encoder = CLIPTextModel.from_pretrained(self.text_encoder_name, subfolder="text_encoder")
|
373 |
+
elif "t5" in self.text_encoder_name:
|
374 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
|
375 |
+
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name)
|
376 |
+
else:
|
377 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.text_encoder_name)
|
378 |
+
self.text_encoder = AutoModel.from_pretrained(self.text_encoder_name)
|
379 |
+
|
380 |
+
self.device = self.text_encoder.device
|
381 |
+
#Music Feature Encoder
|
382 |
+
self.FME = Fundamental_Music_Embedding(d_model = d_fme, base= base, if_trainable = False, type = fme_type,emb_nn=emb_nn,translation_bias_type = translation_bias_type)
|
383 |
+
self.PE = Music_PositionalEncoding(d_model = d_pe, if_index = if_index, if_global_timing = if_global_timing, if_modulo_timing = if_modulo_timing, device = self.device)
|
384 |
+
# self.PE2 = Music_PositionalEncoding(d_model = d_pe, if_index = if_index, if_global_timing = if_global_timing, if_modulo_timing = if_modulo_timing, device = self.device)
|
385 |
+
self.beat_tokenizer = beat_tokenizer(seq_len_beat=beat_len, if_pad = True)
|
386 |
+
self.beat_embedding_layer = Beat_Embedding(self.PE, d_model = d_beat, d_oh_beat_type = d_oh_beat_type)
|
387 |
+
self.chord_embedding_layer = Chord_Embedding(self.FME, self.PE, d_model = d_chord, d_oh_type = d_oh_chord_type, d_oh_inv = d_oh_inv_type)
|
388 |
+
self.chord_tokenizer = chord_tokenizer(seq_len_chord=chord_len, if_pad = True)
|
389 |
+
|
390 |
+
|
391 |
+
def compute_snr(self, timesteps):
|
392 |
+
"""
|
393 |
+
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
|
394 |
+
"""
|
395 |
+
alphas_cumprod = self.noise_scheduler.alphas_cumprod
|
396 |
+
sqrt_alphas_cumprod = alphas_cumprod**0.5
|
397 |
+
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
|
398 |
+
|
399 |
+
# Expand the tensors.
|
400 |
+
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
|
401 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
|
402 |
+
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
|
403 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
|
404 |
+
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
|
405 |
+
|
406 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
|
407 |
+
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
|
408 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
|
409 |
+
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
|
410 |
+
|
411 |
+
# Compute SNR.
|
412 |
+
snr = (alpha / sigma) ** 2
|
413 |
+
return snr
|
414 |
+
|
415 |
+
def encode_text(self, prompt):
|
416 |
+
device = self.text_encoder.device
|
417 |
+
batch = self.tokenizer(
|
418 |
+
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
|
419 |
+
)
|
420 |
+
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) #cuda
|
421 |
+
if self.freeze_text_encoder:
|
422 |
+
with torch.no_grad():
|
423 |
+
encoder_hidden_states = self.text_encoder(
|
424 |
+
input_ids=input_ids, attention_mask=attention_mask
|
425 |
+
)[0] #batch, len_text, dim
|
426 |
+
else:
|
427 |
+
encoder_hidden_states = self.text_encoder(
|
428 |
+
input_ids=input_ids, attention_mask=attention_mask
|
429 |
+
)[0]
|
430 |
+
boolean_encoder_mask = (attention_mask == 1).to(device) ##batch, len_text
|
431 |
+
return encoder_hidden_states, boolean_encoder_mask
|
432 |
+
|
433 |
+
def encode_beats(self, beats):
|
434 |
+
device = self.device
|
435 |
+
out_beat = []
|
436 |
+
out_beat_timing = []
|
437 |
+
out_mask = []
|
438 |
+
for beat in beats:
|
439 |
+
tokenized_beats,tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat)
|
440 |
+
out_beat.append(tokenized_beats)
|
441 |
+
out_beat_timing.append(tokenized_beats_timing)
|
442 |
+
out_mask.append(tokenized_beat_mask)
|
443 |
+
out_beat, out_beat_timing, out_mask = torch.tensor(out_beat).to(device), torch.tensor(out_beat_timing).to(device), torch.tensor(out_mask).to(device) #batch, len_beat
|
444 |
+
embedded_beat = self.beat_embedding_layer(out_beat, out_beat_timing, device)
|
445 |
+
|
446 |
+
return embedded_beat, out_mask
|
447 |
+
|
448 |
+
def encode_chords(self, chords,chords_time):
|
449 |
+
device = self.device
|
450 |
+
out_chord_root = []
|
451 |
+
out_chord_type = []
|
452 |
+
out_chord_inv = []
|
453 |
+
out_chord_timing = []
|
454 |
+
out_mask = []
|
455 |
+
for chord, chord_time in zip(chords,chords_time): #batch loop
|
456 |
+
tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time)
|
457 |
+
out_chord_root.append(tokenized_chord_root)
|
458 |
+
out_chord_type.append(tokenized_chord_type)
|
459 |
+
out_chord_inv.append(tokenized_chord_inv)
|
460 |
+
out_chord_timing.append(tokenized_chord_time)
|
461 |
+
out_mask.append(tokenized_chord_mask)
|
462 |
+
#chords: (B, LEN, 4)
|
463 |
+
out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, out_mask = torch.tensor(out_chord_root).to(device), torch.tensor(out_chord_type).to(device), torch.tensor(out_chord_inv).to(device), torch.tensor(out_chord_timing).to(device), torch.tensor(out_mask).to(device)
|
464 |
+
embedded_chord = self.chord_embedding_layer(out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, device)
|
465 |
+
return embedded_chord, out_mask
|
466 |
+
# return out_chord_root, out_mask
|
467 |
+
|
468 |
+
|
469 |
+
def forward(self, latents, prompt, beats, chords,chords_time, validation_mode=False):
|
470 |
+
device = self.text_encoder.device
|
471 |
+
num_train_timesteps = self.noise_scheduler.num_train_timesteps
|
472 |
+
self.noise_scheduler.set_timesteps(num_train_timesteps, device=device)
|
473 |
+
|
474 |
+
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt)
|
475 |
+
|
476 |
+
# with torch.no_grad():
|
477 |
+
encoded_beats, beat_mask = self.encode_beats(beats) #batch, len_beats, dim; batch, len_beats
|
478 |
+
encoded_chords, chord_mask = self.encode_chords(chords,chords_time)
|
479 |
+
|
480 |
+
|
481 |
+
if self.uncondition:
|
482 |
+
mask_indices = [k for k in range(len(prompt)) if random.random() < 0.1]
|
483 |
+
if len(mask_indices) > 0:
|
484 |
+
encoder_hidden_states[mask_indices] = 0
|
485 |
+
encoded_chords[mask_indices] = 0
|
486 |
+
encoded_beats[mask_indices] = 0
|
487 |
+
|
488 |
+
bsz = latents.shape[0]
|
489 |
+
|
490 |
+
if validation_mode:
|
491 |
+
timesteps = (self.noise_scheduler.num_train_timesteps//2) * torch.ones((bsz,), dtype=torch.int64, device=device)
|
492 |
+
else:
|
493 |
+
timesteps = torch.randint(0, self.noise_scheduler.num_train_timesteps, (bsz,), device=device)
|
494 |
+
|
495 |
+
|
496 |
+
timesteps = timesteps.long()
|
497 |
+
|
498 |
+
noise = torch.randn_like(latents)
|
499 |
+
noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps)
|
500 |
+
|
501 |
+
# Get the target for loss depending on the prediction type
|
502 |
+
if self.noise_scheduler.config.prediction_type == "epsilon":
|
503 |
+
target = noise
|
504 |
+
elif self.noise_scheduler.config.prediction_type == "v_prediction":
|
505 |
+
target = self.noise_scheduler.get_velocity(latents, noise, timesteps)
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unknown prediction type {self.noise_scheduler.config.prediction_type}")
|
508 |
+
|
509 |
+
if self.set_from == "random":
|
510 |
+
# model_pred = torch.zeros((bsz,8,256,16)).to(device)
|
511 |
+
model_pred = self.unet(
|
512 |
+
noisy_latents, timesteps, encoder_hidden_states, encoded_beats, encoded_chords,
|
513 |
+
encoder_attention_mask=boolean_encoder_mask, beat_attention_mask = beat_mask, chord_attention_mask = chord_mask
|
514 |
+
).sample
|
515 |
+
|
516 |
+
elif self.set_from == "pre-trained":
|
517 |
+
compressed_latents = self.group_in(noisy_latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
|
518 |
+
model_pred = self.unet(
|
519 |
+
compressed_latents, timesteps, encoder_hidden_states,
|
520 |
+
encoder_attention_mask=boolean_encoder_mask
|
521 |
+
).sample
|
522 |
+
model_pred = self.group_out(model_pred.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
|
523 |
+
|
524 |
+
if self.snr_gamma is None:
|
525 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
526 |
+
else:
|
527 |
+
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
|
528 |
+
# Adaptef from huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
|
529 |
+
snr = self.compute_snr(timesteps)
|
530 |
+
mse_loss_weights = (
|
531 |
+
torch.stack([snr, self.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
|
532 |
+
)
|
533 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
|
534 |
+
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
|
535 |
+
loss = loss.mean()
|
536 |
+
|
537 |
+
return loss
|
538 |
+
|
539 |
+
@torch.no_grad()
|
540 |
+
def inference(self, prompt, beats, chords,chords_time, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1,
|
541 |
+
disable_progress=True):
|
542 |
+
device = self.text_encoder.device
|
543 |
+
classifier_free_guidance = guidance_scale > 1.0
|
544 |
+
batch_size = len(prompt) * num_samples_per_prompt
|
545 |
+
|
546 |
+
if classifier_free_guidance:
|
547 |
+
prompt_embeds, boolean_prompt_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt)
|
548 |
+
encoded_beats, beat_mask = self.encode_beats_classifier_free(beats, num_samples_per_prompt) #batch, len_beats, dim; batch, len_beats
|
549 |
+
encoded_chords, chord_mask = self.encode_chords_classifier_free(chords, chords_time, num_samples_per_prompt)
|
550 |
+
else:
|
551 |
+
prompt_embeds, boolean_prompt_mask = self.encode_text(prompt)
|
552 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
553 |
+
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
|
554 |
+
|
555 |
+
encoded_beats, beat_mask = self.encode_beats(beats) #batch, len_beats, dim; batch, len_beats
|
556 |
+
encoded_beats = encoded_beats.repeat_interleave(num_samples_per_prompt, 0)
|
557 |
+
beat_mask = beat_mask.repeat_interleave(num_samples_per_prompt, 0)
|
558 |
+
|
559 |
+
encoded_chords, chord_mask = self.encode_chords(chords,chords_time)
|
560 |
+
encoded_chords = encoded_chords.repeat_interleave(num_samples_per_prompt, 0)
|
561 |
+
chord_mask = chord_mask.repeat_interleave(num_samples_per_prompt, 0)
|
562 |
+
|
563 |
+
# print(f"encoded_chords:{encoded_chords.shape}, chord_mask:{chord_mask.shape}, prompt_embeds:{prompt_embeds.shape},boolean_prompt_mask:{boolean_prompt_mask.shape} ")
|
564 |
+
inference_scheduler.set_timesteps(num_steps, device=device)
|
565 |
+
timesteps = inference_scheduler.timesteps
|
566 |
+
|
567 |
+
num_channels_latents = self.unet.in_channels
|
568 |
+
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)
|
569 |
+
|
570 |
+
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
|
571 |
+
progress_bar = tqdm(range(num_steps), disable=disable_progress)
|
572 |
+
|
573 |
+
for i, t in enumerate(timesteps):
|
574 |
+
# expand the latents if we are doing classifier free guidance
|
575 |
+
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
|
576 |
+
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
|
577 |
+
|
578 |
+
noise_pred = self.unet(
|
579 |
+
latent_model_input, t, encoder_hidden_states=prompt_embeds,
|
580 |
+
encoder_attention_mask=boolean_prompt_mask,
|
581 |
+
beat_features = encoded_beats, beat_attention_mask = beat_mask, chord_features = encoded_chords,chord_attention_mask = chord_mask
|
582 |
+
).sample
|
583 |
+
|
584 |
+
# perform guidance
|
585 |
+
if classifier_free_guidance: #should work for beats and chords too
|
586 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
587 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
588 |
+
|
589 |
+
# compute the previous noisy sample x_t -> x_t-1
|
590 |
+
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
|
591 |
+
|
592 |
+
# call the callback, if provided
|
593 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
|
594 |
+
progress_bar.update(1)
|
595 |
+
|
596 |
+
if self.set_from == "pre-trained":
|
597 |
+
latents = self.group_out(latents.permute(0, 2, 3, 1).contiguous()).permute(0, 3, 1, 2).contiguous()
|
598 |
+
return latents
|
599 |
+
|
600 |
+
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
|
601 |
+
shape = (batch_size, num_channels_latents, 256, 16)
|
602 |
+
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
|
603 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
604 |
+
latents = latents * inference_scheduler.init_noise_sigma
|
605 |
+
return latents
|
606 |
+
|
607 |
+
def encode_text_classifier_free(self, prompt, num_samples_per_prompt):
|
608 |
+
device = self.text_encoder.device
|
609 |
+
batch = self.tokenizer(
|
610 |
+
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
|
611 |
+
)
|
612 |
+
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
|
613 |
+
|
614 |
+
with torch.no_grad():
|
615 |
+
prompt_embeds = self.text_encoder(
|
616 |
+
input_ids=input_ids, attention_mask=attention_mask
|
617 |
+
)[0]
|
618 |
+
|
619 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
620 |
+
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
|
621 |
+
|
622 |
+
# get unconditional embeddings for classifier free guidance
|
623 |
+
# print(len(prompt), 'this is prompt len')
|
624 |
+
uncond_tokens = [""] * len(prompt)
|
625 |
+
|
626 |
+
max_length = prompt_embeds.shape[1]
|
627 |
+
uncond_batch = self.tokenizer(
|
628 |
+
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
|
629 |
+
)
|
630 |
+
uncond_input_ids = uncond_batch.input_ids.to(device)
|
631 |
+
uncond_attention_mask = uncond_batch.attention_mask.to(device)
|
632 |
+
|
633 |
+
with torch.no_grad():
|
634 |
+
negative_prompt_embeds = self.text_encoder(
|
635 |
+
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
|
636 |
+
)[0]
|
637 |
+
|
638 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
639 |
+
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
|
640 |
+
|
641 |
+
# For classifier free guidance, we need to do two forward passes.
|
642 |
+
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
|
643 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
644 |
+
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
|
645 |
+
boolean_prompt_mask = (prompt_mask == 1).to(device)
|
646 |
+
|
647 |
+
return prompt_embeds, boolean_prompt_mask
|
648 |
+
|
649 |
+
|
650 |
+
def encode_beats_classifier_free(self, beats, num_samples_per_prompt):
|
651 |
+
device = self.device
|
652 |
+
with torch.no_grad():
|
653 |
+
out_beat = []
|
654 |
+
out_beat_timing = []
|
655 |
+
out_mask = []
|
656 |
+
for beat in beats:
|
657 |
+
tokenized_beats,tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat)
|
658 |
+
out_beat.append(tokenized_beats)
|
659 |
+
out_beat_timing.append(tokenized_beats_timing)
|
660 |
+
out_mask.append(tokenized_beat_mask)
|
661 |
+
out_beat, out_beat_timing, out_mask = torch.tensor(out_beat).to(device), torch.tensor(out_beat_timing).to(device), torch.tensor(out_mask).to(device) #batch, len_beat
|
662 |
+
embedded_beat = self.beat_embedding_layer(out_beat, out_beat_timing, device)
|
663 |
+
|
664 |
+
embedded_beat = embedded_beat.repeat_interleave(num_samples_per_prompt, 0)
|
665 |
+
out_mask = out_mask.repeat_interleave(num_samples_per_prompt, 0)
|
666 |
+
|
667 |
+
uncond_beats = [[[],[]]] * len(beats)
|
668 |
+
|
669 |
+
max_length = embedded_beat.shape[1]
|
670 |
+
with torch.no_grad():
|
671 |
+
out_beat_unc = []
|
672 |
+
out_beat_timing_unc = []
|
673 |
+
out_mask_unc = []
|
674 |
+
for beat in uncond_beats:
|
675 |
+
tokenized_beats, tokenized_beats_timing, tokenized_beat_mask = self.beat_tokenizer(beat)
|
676 |
+
out_beat_unc.append(tokenized_beats)
|
677 |
+
out_beat_timing_unc.append(tokenized_beats_timing)
|
678 |
+
out_mask_unc.append(tokenized_beat_mask)
|
679 |
+
out_beat_unc, out_beat_timing_unc, out_mask_unc = torch.tensor(out_beat_unc).to(device), torch.tensor(out_beat_timing_unc).to(device), torch.tensor(out_mask_unc).to(device) #batch, len_beat
|
680 |
+
embedded_beat_unc = self.beat_embedding_layer(out_beat_unc, out_beat_timing_unc, device)
|
681 |
+
|
682 |
+
embedded_beat_unc = embedded_beat_unc.repeat_interleave(num_samples_per_prompt, 0)
|
683 |
+
out_mask_unc = out_mask_unc.repeat_interleave(num_samples_per_prompt, 0)
|
684 |
+
|
685 |
+
embedded_beat = torch.cat([embedded_beat_unc, embedded_beat])
|
686 |
+
out_mask = torch.cat([out_mask_unc, out_mask])
|
687 |
+
|
688 |
+
return embedded_beat, out_mask
|
689 |
+
|
690 |
+
|
691 |
+
def encode_chords_classifier_free(self, chords, chords_time, num_samples_per_prompt):
|
692 |
+
device = self.device
|
693 |
+
with torch.no_grad():
|
694 |
+
out_chord_root = []
|
695 |
+
out_chord_type = []
|
696 |
+
out_chord_inv = []
|
697 |
+
out_chord_timing = []
|
698 |
+
out_mask = []
|
699 |
+
for chord, chord_time in zip(chords,chords_time): #batch loop
|
700 |
+
tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time)
|
701 |
+
out_chord_root.append(tokenized_chord_root)
|
702 |
+
out_chord_type.append(tokenized_chord_type)
|
703 |
+
out_chord_inv.append(tokenized_chord_inv)
|
704 |
+
out_chord_timing.append(tokenized_chord_time)
|
705 |
+
out_mask.append(tokenized_chord_mask)
|
706 |
+
out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, out_mask = torch.tensor(out_chord_root).to(device), torch.tensor(out_chord_type).to(device), torch.tensor(out_chord_inv).to(device), torch.tensor(out_chord_timing).to(device), torch.tensor(out_mask).to(device)
|
707 |
+
embedded_chord = self.chord_embedding_layer(out_chord_root, out_chord_type, out_chord_inv, out_chord_timing, device)
|
708 |
+
|
709 |
+
embedded_chord = embedded_chord.repeat_interleave(num_samples_per_prompt, 0)
|
710 |
+
out_mask = out_mask.repeat_interleave(num_samples_per_prompt, 0)
|
711 |
+
|
712 |
+
chords_unc=[[]] * len(chords)
|
713 |
+
chords_time_unc=[[]] * len(chords_time)
|
714 |
+
|
715 |
+
max_length = embedded_chord.shape[1]
|
716 |
+
|
717 |
+
with torch.no_grad():
|
718 |
+
out_chord_root_unc = []
|
719 |
+
out_chord_type_unc = []
|
720 |
+
out_chord_inv_unc = []
|
721 |
+
out_chord_timing_unc = []
|
722 |
+
out_mask_unc = []
|
723 |
+
for chord, chord_time in zip(chords_unc,chords_time_unc): #batch loop
|
724 |
+
tokenized_chord_root, tokenized_chord_type, tokenized_chord_inv, tokenized_chord_time, tokenized_chord_mask = self.chord_tokenizer(chord, chord_time)
|
725 |
+
out_chord_root_unc.append(tokenized_chord_root)
|
726 |
+
out_chord_type_unc.append(tokenized_chord_type)
|
727 |
+
out_chord_inv_unc.append(tokenized_chord_inv)
|
728 |
+
out_chord_timing_unc.append(tokenized_chord_time)
|
729 |
+
out_mask_unc.append(tokenized_chord_mask)
|
730 |
+
out_chord_root_unc, out_chord_type_unc, out_chord_inv_unc, out_chord_timing_unc, out_mask_unc = torch.tensor(out_chord_root_unc).to(device), torch.tensor(out_chord_type_unc).to(device), torch.tensor(out_chord_inv_unc).to(device), torch.tensor(out_chord_timing_unc).to(device), torch.tensor(out_mask_unc).to(device)
|
731 |
+
embedded_chord_unc = self.chord_embedding_layer(out_chord_root_unc, out_chord_type_unc, out_chord_inv_unc, out_chord_timing_unc, device)
|
732 |
+
|
733 |
+
|
734 |
+
embedded_chord_unc = embedded_chord_unc.repeat_interleave(num_samples_per_prompt, 0)
|
735 |
+
out_mask_unc = out_mask_unc.repeat_interleave(num_samples_per_prompt, 0)
|
736 |
+
|
737 |
+
embedded_chord = torch.cat([embedded_chord_unc, embedded_chord])
|
738 |
+
out_mask = torch.cat([out_mask_unc, out_mask])
|
739 |
+
|
740 |
+
return embedded_chord, out_mask
|
.ipynb_checkpoints/requirements-checkpoint.txt
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
-
torch==
|
2 |
-
torchaudio==0.
|
3 |
-
torchvision==0.
|
4 |
-
transformers==4.
|
5 |
-
accelerate==0.
|
6 |
datasets==2.1.0
|
7 |
einops==0.6.1
|
8 |
h5py==3.8.0
|
9 |
-
huggingface_hub==0.
|
10 |
importlib_metadata==6.3.0
|
11 |
librosa==0.9.2
|
12 |
matplotlib==3.5.2
|
@@ -17,6 +17,7 @@ pandas==1.4.1
|
|
17 |
progressbar33==2.4
|
18 |
protobuf==3.20.*
|
19 |
resampy==0.4.2
|
|
|
20 |
sentencepiece==0.1.99
|
21 |
scikit_image==0.19.3
|
22 |
scikit_learn==1.2.2
|
|
|
1 |
+
torch==2.0.1
|
2 |
+
torchaudio==2.0.2
|
3 |
+
torchvision==0.15.2
|
4 |
+
transformers==4.31.0
|
5 |
+
accelerate==0.21.0
|
6 |
datasets==2.1.0
|
7 |
einops==0.6.1
|
8 |
h5py==3.8.0
|
9 |
+
huggingface_hub==0.19.4
|
10 |
importlib_metadata==6.3.0
|
11 |
librosa==0.9.2
|
12 |
matplotlib==3.5.2
|
|
|
17 |
progressbar33==2.4
|
18 |
protobuf==3.20.*
|
19 |
resampy==0.4.2
|
20 |
+
safetensors==0.3.2
|
21 |
sentencepiece==0.1.99
|
22 |
scikit_image==0.19.3
|
23 |
scikit_learn==1.2.2
|
__pycache__/modelling_deberta_v2.cpython-310.pyc
ADDED
Binary file (49.2 kB). View file
|
|
__pycache__/models.cpython-310.pyc
ADDED
Binary file (17.2 kB). View file
|
|
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import json
|
3 |
import torch
|
4 |
import wavio
|
|
|
5 |
from tqdm import tqdm
|
6 |
from huggingface_hub import snapshot_download
|
7 |
|
@@ -23,6 +24,7 @@ class MusicFeaturePredictor:
|
|
23 |
def __init__(self, path, device="cuda:0", cache_dir=None, local_files_only=False):
|
24 |
self.beats_tokenizer = AutoTokenizer.from_pretrained(
|
25 |
"microsoft/deberta-v3-large",
|
|
|
26 |
cache_dir=cache_dir,
|
27 |
local_files_only=local_files_only,
|
28 |
)
|
@@ -164,6 +166,7 @@ class Mustango:
|
|
164 |
main_config["scheduler_name"],
|
165 |
unet_model_config_path=f"{path}/configs/music_diffusion_model_config.json",
|
166 |
).to(device)
|
|
|
167 |
|
168 |
vae_weights = torch.load(
|
169 |
f"{path}/vae/pytorch_model_vae.bin", map_location=device
|
@@ -213,9 +216,11 @@ class Mustango:
|
|
213 |
|
214 |
# Initialize Mustango
|
215 |
if torch.cuda.is_available():
|
216 |
-
mustango = Mustango()
|
217 |
else:
|
218 |
mustango = Mustango(device="cpu")
|
|
|
|
|
219 |
|
220 |
def gradio_generate(prompt, steps, guidance):
|
221 |
output_wave = mustango.generate(prompt, steps, guidance)
|
@@ -225,6 +230,7 @@ def gradio_generate(prompt, steps, guidance):
|
|
225 |
|
226 |
return output_filename
|
227 |
|
|
|
228 |
# description_text = """
|
229 |
# <p><a href="https://huggingface.co/spaces/declare-lab/mustango/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
|
230 |
# Generate music using Mustango by providing a text prompt.
|
|
|
2 |
import json
|
3 |
import torch
|
4 |
import wavio
|
5 |
+
import numpy as np
|
6 |
from tqdm import tqdm
|
7 |
from huggingface_hub import snapshot_download
|
8 |
|
|
|
24 |
def __init__(self, path, device="cuda:0", cache_dir=None, local_files_only=False):
|
25 |
self.beats_tokenizer = AutoTokenizer.from_pretrained(
|
26 |
"microsoft/deberta-v3-large",
|
27 |
+
use_fast=False,
|
28 |
cache_dir=cache_dir,
|
29 |
local_files_only=local_files_only,
|
30 |
)
|
|
|
166 |
main_config["scheduler_name"],
|
167 |
unet_model_config_path=f"{path}/configs/music_diffusion_model_config.json",
|
168 |
).to(device)
|
169 |
+
self.model.device = device
|
170 |
|
171 |
vae_weights = torch.load(
|
172 |
f"{path}/vae/pytorch_model_vae.bin", map_location=device
|
|
|
216 |
|
217 |
# Initialize Mustango
|
218 |
if torch.cuda.is_available():
|
219 |
+
mustango = Mustango(device="cpu")
|
220 |
else:
|
221 |
mustango = Mustango(device="cpu")
|
222 |
+
|
223 |
+
output_wave = mustango.generate("This techno song features a synth lead playing the main melody.", 5, 3, disable_progress=False)
|
224 |
|
225 |
def gradio_generate(prompt, steps, guidance):
|
226 |
output_wave = mustango.generate(prompt, steps, guidance)
|
|
|
230 |
|
231 |
return output_filename
|
232 |
|
233 |
+
|
234 |
# description_text = """
|
235 |
# <p><a href="https://huggingface.co/spaces/declare-lab/mustango/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
|
236 |
# Generate music using Mustango by providing a text prompt.
|
audioldm/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (330 Bytes). View file
|
|
audioldm/__pycache__/ldm.cpython-310.pyc
ADDED
Binary file (16.1 kB). View file
|
|
audioldm/__pycache__/pipeline.cpython-310.pyc
ADDED
Binary file (6.65 kB). View file
|
|
audioldm/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (8.02 kB). View file
|
|
audioldm/audio/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (268 Bytes). View file
|
|
audioldm/audio/__pycache__/audio_processing.cpython-310.pyc
ADDED
Binary file (2.79 kB). View file
|
|
audioldm/audio/__pycache__/stft.cpython-310.pyc
ADDED
Binary file (4.99 kB). View file
|
|
audioldm/audio/__pycache__/tools.cpython-310.pyc
ADDED
Binary file (2.2 kB). View file
|
|
audioldm/hifigan/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (584 Bytes). View file
|
|
audioldm/hifigan/__pycache__/models.cpython-310.pyc
ADDED
Binary file (3.75 kB). View file
|
|
audioldm/hifigan/__pycache__/utilities.cpython-310.pyc
ADDED
Binary file (2.5 kB). View file
|
|
audioldm/latent_diffusion/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (172 Bytes). View file
|
|
audioldm/latent_diffusion/__pycache__/attention.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
audioldm/latent_diffusion/__pycache__/ddim.cpython-310.pyc
ADDED
Binary file (7.22 kB). View file
|
|
audioldm/latent_diffusion/__pycache__/ddpm.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
audioldm/latent_diffusion/__pycache__/ema.cpython-310.pyc
ADDED
Binary file (3.03 kB). View file
|
|
audioldm/latent_diffusion/__pycache__/util.cpython-310.pyc
ADDED
Binary file (9.54 kB). View file
|
|
audioldm/variational_autoencoder/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (228 Bytes). View file
|
|
audioldm/variational_autoencoder/__pycache__/autoencoder.cpython-310.pyc
ADDED
Binary file (4.38 kB). View file
|
|
audioldm/variational_autoencoder/__pycache__/distributions.cpython-310.pyc
ADDED
Binary file (3.77 kB). View file
|
|
audioldm/variational_autoencoder/__pycache__/modules.cpython-310.pyc
ADDED
Binary file (21.5 kB). View file
|
|
diffusers/src/diffusers/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (6.33 kB). View file
|
|
diffusers/src/diffusers/__pycache__/configuration_utils.cpython-310.pyc
ADDED
Binary file (22.1 kB). View file
|
|
diffusers/src/diffusers/__pycache__/image_processor.cpython-310.pyc
ADDED
Binary file (6.4 kB). View file
|
|
diffusers/src/diffusers/__pycache__/loaders.cpython-310.pyc
ADDED
Binary file (20.5 kB). View file
|
|
diffusers/src/diffusers/__pycache__/optimization.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
diffusers/src/diffusers/__pycache__/pipeline_utils.cpython-310.pyc
ADDED
Binary file (257 Bytes). View file
|
|
diffusers/src/diffusers/__pycache__/training_utils.cpython-310.pyc
ADDED
Binary file (10.8 kB). View file
|
|
diffusers/src/diffusers/models/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.17 kB). View file
|
|
diffusers/src/diffusers/models/__pycache__/attention.cpython-310.pyc
ADDED
Binary file (15.7 kB). View file
|
|
diffusers/src/diffusers/models/__pycache__/attention_processor.cpython-310.pyc
ADDED
Binary file (16.5 kB). View file
|
|
diffusers/src/diffusers/models/__pycache__/autoencoder_kl.cpython-310.pyc
ADDED
Binary file (12.2 kB). View file
|
|
diffusers/src/diffusers/models/__pycache__/controlnet.cpython-310.pyc
ADDED
Binary file (15.5 kB). View file
|
|
diffusers/src/diffusers/models/__pycache__/dual_transformer_2d.cpython-310.pyc
ADDED
Binary file (5.73 kB). View file
|
|
diffusers/src/diffusers/models/__pycache__/embeddings.cpython-310.pyc
ADDED
Binary file (11.2 kB). View file
|
|
diffusers/src/diffusers/models/__pycache__/modeling_utils.cpython-310.pyc
ADDED
Binary file (27 kB). View file
|
|
diffusers/src/diffusers/models/__pycache__/prior_transformer.cpython-310.pyc
ADDED
Binary file (7.08 kB). View file
|
|
diffusers/src/diffusers/models/__pycache__/resnet.cpython-310.pyc
ADDED
Binary file (24.2 kB). View file
|
|
diffusers/src/diffusers/models/__pycache__/t5_film_transformer.cpython-310.pyc
ADDED
Binary file (9.29 kB). View file
|
|
diffusers/src/diffusers/models/__pycache__/transformer_2d.cpython-310.pyc
ADDED
Binary file (11.4 kB). View file
|
|
diffusers/src/diffusers/models/__pycache__/transformer_temporal.cpython-310.pyc
ADDED
Binary file (6.11 kB). View file
|
|
diffusers/src/diffusers/models/__pycache__/unet_1d.cpython-310.pyc
ADDED
Binary file (7.75 kB). View file
|
|
diffusers/src/diffusers/models/__pycache__/unet_1d_blocks.cpython-310.pyc
ADDED
Binary file (16.7 kB). View file
|
|