import streamlit as st import torch from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler from huggingface_hub import login from tqdm.auto import tqdm import os from PIL import Image import io class ProgressCallback: def __init__(self, progress_bar): self.progress_bar = progress_bar def __call__(self, step: int, timestep: int, latents: torch.FloatTensor): self.progress_bar.progress(step / self.progress_bar.total) def setup_stable_diffusion(hf_token): """ Setup Stable Diffusion with proper authentication and GPU optimization Args: hf_token (str): HuggingFace API token """ # Check GPU availability if not torch.cuda.is_available(): st.warning("WARNING: No GPU detected. Processing will be slow on CPU.") return None # Display GPU info st.info(f"Using GPU: {torch.cuda.get_device_name()}") st.info(f"GPU Memory Available: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB") # Login to Hugging Face login(token=hf_token) # Initialize the pipeline model_id = "runwayml/stable-diffusion-v1-5" with st.spinner("Loading Stable Diffusion model..."): pipe = StableDiffusionPipeline.from_pretrained( model_id, torch_dtype=torch.float16, use_safetensors=True, token=hf_token ) # Use DPM++ 2M scheduler pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) # Move to GPU and optimize pipe = pipe.to("cuda") pipe.enable_attention_slicing() pipe.enable_vae_slicing() # Try to enable xformers try: pipe.enable_xformers_memory_efficient_attention() st.success("Successfully enabled xformers memory efficient attention") except Exception: st.warning("Note: xformers not available. Install with: pip install xformers") pipe.safety_checker = None return pipe def generate_image(pipe, prompt, num_inference_steps=30): """ Generate an image using the initialized pipeline Args: pipe: Initialized StableDiffusionPipeline prompt (str): Text prompt for image generation num_inference_steps (int): Number of denoising steps """ if pipe is None: st.error("Error: Pipeline not properly initialized") return None # Clear CUDA cache before generation if torch.cuda.is_available(): torch.cuda.empty_cache() # Create a progress bar progress_bar = st.progress(0) status_text = st.empty() # Update the callback to use Streamlit's progress bar pipe.callback = ProgressCallback(progress_bar) status_text.text(f"Generating image for prompt: '{prompt}'") with torch.autocast("cuda"): image = pipe( prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=7.5, ).images[0] progress_bar.empty() status_text.empty() return image def main(): st.title("🎨 Stable Diffusion Image Generator") # Initialize session state if 'pipe' not in st.session_state: st.session_state.pipe = None if 'model_initialized' not in st.session_state: st.session_state.model_initialized = False # Sidebar for configuration st.sidebar.header("Configuration") # HuggingFace token input hf_token = st.sidebar.text_input("Enter HuggingFace Token:", type="password") # Auto-initialize when token is entered if hf_token and not st.session_state.model_initialized: st.session_state.pipe = setup_stable_diffusion(hf_token) if st.session_state.pipe is not None: st.session_state.model_initialized = True st.sidebar.success("Model initialized successfully!") # Main interface prompt = st.text_input("Enter your prompt:", "A stunning landscape with mountains and a lake at sunset") num_steps = st.slider("Number of inference steps:", min_value=20, max_value=100, value=30) if st.button("Generate Image"): if not st.session_state.model_initialized: st.error("Please enter your HuggingFace token in the sidebar to initialize the model!") else: try: image = generate_image(st.session_state.pipe, prompt, num_steps) if image is not None: st.image(image, caption=prompt, use_column_width=True) # Add download button buf = io.BytesIO() image.save(buf, format='PNG') st.download_button( label="Download Image", data=buf.getvalue(), file_name=f"generated_image_{prompt[:30]}.png", mime="image/png" ) except Exception as e: st.error(f"An error occurred: {str(e)}") if torch.cuda.is_available(): torch.cuda.empty_cache() if __name__ == "__main__": main()