Amiche02's picture
Add application file
bd2201e
import numpy as np
import cv2
from ultralytics import YOLO
import gradio as gr
# Dictionary containing disease names and remedies
disease_remedies = {
"bacterial spot": "Remove infected plant debris, use copper-based fungicides.",
"early blight": "Apply fungicides, practice crop rotation.",
"healthy": "No action needed.",
"late blight": "Remove infected plants, use fungicides.",
"leaf miner": "Use insecticidal sprays, remove affected leaves.",
"leaf mold": "Improve air circulation, use fungicides.",
"mosaic virus": "Remove infected plants, control aphids.",
"septoria": "Remove infected leaves, use fungicides.",
"spider mites": "Use miticides, introduce beneficial insects.",
"yellow leaf curl virus": "Remove infected plants, control whiteflies."
}
def custom_images(img, target_size):
"""
Verifies the shape of the input image and reshapes it if necessary.
Args:
img (numpy.ndarray): The input image.
target_size (tuple): The target size for the image.
Returns:
img (numpy.ndarray): The reshaped image.
"""
img = cv2.resize(img, target_size)
return img
def plant_disease_detect(img, model, original_size):
"""
Performs plant disease detection on the given image using the YOLO model.
Args:
img (numpy.ndarray): The input image.
model (YOLO): The YOLO model to use for detection.
original_size (tuple): The original size of the input image.
Returns:
detect_img (numpy.ndarray): The image with the detected objects and their classes.
classes (list): A list of the predicted class names.
"""
# Pass the image through the detection model and get the result
detect_result = model(img)
# Plot the detections
detect_img = detect_result[0].plot()
detections = detect_result[0].boxes.data.tolist()
classes = [model.names[int(detection[5])] for detection in detections]
# Resize the output image to the original input size
detect_img = cv2.resize(detect_img, original_size)
return detect_img, classes
def detect_and_display(img, width, height):
model = YOLO('best_95.pt')
original_size = (img.shape[1], img.shape[0])
resized_image = custom_images(img, (width, height))
detect_img, classes = plant_disease_detect(resized_image, model, original_size)
unique_classes = list(set(classes))
class_table = [[cls, disease_remedies.get(cls.lower(), "No remedy available")] for cls in unique_classes]
return detect_img, class_table
def image_to_numpy(image):
"""
Converts an uploaded image to a numpy array.
Args:
image (PIL.Image): The uploaded image.
Returns:
np.ndarray: The image as a numpy array.
"""
image_array = np.array(image)
if image_array.ndim == 2: # grayscale
image_array = cv2.cvtColor(image_array, cv2.COLOR_GRAY2BGR)
elif image_array.shape[2] == 4: # RGBA
image_array = cv2.cvtColor(image_array, cv2.COLOR_RGBA2BGR)
return image_array
with gr.Blocks() as demo:
gr.Markdown("# DRONE-INSPECTOR")
gr.Markdown("Upload an image of a plant to detect diseases.")
with gr.Row():
with gr.Column():
img_input = gr.Image(type="numpy", label="Upload Image")
width_slider = gr.Slider(256, 1024, value=512, label="Select Image Width")
height_slider = gr.Slider(256, 1024, value=512, label="Select Image Height")
submit_btn = gr.Button("Submit")
with gr.Column():
img_output = gr.Image(label="Processed Image with Detections")
class_table = gr.DataFrame(headers=["Disease", "Remedy"], label="Detected Diseases and Remedies")
submit_btn.click(fn=detect_and_display, inputs=[img_input, width_slider, height_slider], outputs=[img_output, class_table])
gr.Markdown("Author: Stéphane KPOVIESSI")
gr.Markdown("LinkedIn: [Amiche](https://www.linkedin.com/in/stephanekpoviessi/)")
demo.launch()