|
|
|
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
import gradio as gr |
|
|
|
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") |
|
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2") |
|
|
|
|
|
|
|
|
|
|
|
global chosen_strategy |
|
|
|
def generate(input_text, number_steps, number_beams, number_beam_groups, diversity_penalty, length_penalty, num_return_sequences, temperature, no_repeat_ngram_size, repetition_penalty, early_stopping, beam_temperature, top_p, top_k,penalty_alpha,top_p_box,top_k_box,strategy_selected,model_selected): |
|
|
|
chosen_strategy = strategy_selected |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
|
|
if chosen_strategy == "Sampling": |
|
|
|
top_p_flag = top_p_box |
|
top_k_flag = top_k_box |
|
|
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=number_steps, |
|
return_dict_in_generate=False, |
|
temperature=temperature, |
|
top_p=top_p if top_p_flag else None, |
|
top_k=top_k if top_k_flag else None, |
|
no_repeat_ngram_size = no_repeat_ngram_size, |
|
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None, |
|
output_scores=False, |
|
do_sample=True |
|
) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
elif chosen_strategy == "Beam Search": |
|
|
|
beam_temp_flag = beam_temperature |
|
early_stop_flag = early_stopping |
|
|
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate( |
|
|
|
**inputs, |
|
max_new_tokens=number_steps, |
|
num_beams=number_beams, |
|
num_return_sequences=min(num_return_sequences, number_beams), |
|
return_dict_in_generate=False, |
|
length_penalty=length_penalty, |
|
temperature=temperature if beam_temp_flag else None, |
|
no_repeat_ngram_size = no_repeat_ngram_size, |
|
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None, |
|
early_stopping = True if early_stop_flag else False, |
|
output_scores=False, |
|
do_sample=True if beam_temp_flag else False |
|
) |
|
|
|
beam_options_list = [] |
|
for i, beam_output in enumerate(outputs): |
|
beam_options_list.append (tokenizer.decode(beam_output, skip_special_tokens=True)) |
|
options = "\n\n - Option - \n".join(beam_options_list) |
|
return ("Beam Search Generation" + "\n" + "-" * 10 + "\n" + options) |
|
|
|
|
|
elif chosen_strategy == "Diversity Beam Search": |
|
|
|
early_stop_flag = early_stopping |
|
|
|
if number_beam_groups == 1: |
|
number_beam_groups = 2 |
|
|
|
|
|
if number_beam_groups > number_beams: |
|
number_beams = number_beam_groups |
|
|
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate( |
|
|
|
**inputs, |
|
max_new_tokens=number_steps, |
|
num_beams=number_beams, |
|
num_beam_groups=number_beam_groups, |
|
diversity_penalty=float(diversity_penalty), |
|
num_return_sequences=min(num_return_sequences, number_beams), |
|
return_dict_in_generate=False, |
|
length_penalty=length_penalty, |
|
no_repeat_ngram_size = no_repeat_ngram_size, |
|
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None, |
|
early_stopping = True if early_stop_flag else False, |
|
output_scores=False, |
|
) |
|
|
|
beam_options_list = [] |
|
for i, beam_output in enumerate(outputs): |
|
beam_options_list.append (tokenizer.decode(beam_output, skip_special_tokens=True)) |
|
options = "\n\n ------ Option ------- \n".join(beam_options_list) |
|
return ("Diversity Beam Search Generation" + "\n" + "-" * 10 + "\n" + options) |
|
|
|
elif chosen_strategy == "Contrastive": |
|
|
|
top_k_flag = top_k_box |
|
|
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=number_steps, |
|
return_dict_in_generate=False, |
|
temperature=temperature, |
|
penalty_alpha=penalty_alpha, |
|
top_k=top_k if top_k_flag else None, |
|
no_repeat_ngram_size = no_repeat_ngram_size, |
|
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None, |
|
output_scores=False, |
|
do_sample=True |
|
) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
|
|
|
|
def load_model(model_selected): |
|
|
|
if model_selected == "gpt2": |
|
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") |
|
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", pad_token_id=tokenizer.eos_token_id) |
|
|
|
|
|
if model_selected == "Gemma 2": |
|
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") |
|
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b") |
|
|
|
|
|
|
|
|
|
|
|
def change_num_return_sequences(n_beams, num_return_sequences): |
|
|
|
if (num_return_sequences > n_beams): |
|
return gr.Slider( |
|
label="Number of sequences", minimum=1, maximum=n_beams, step=1, value=n_beams) |
|
|
|
return gr.Slider ( |
|
label="Number of sequences", minimum=1, maximum=n_beams, step=1, value=num_return_sequences) |
|
|
|
|
|
|
|
def popualate_beam_groups (n_beams): |
|
|
|
global chosen_strategy |
|
no_of_beams = n_beams |
|
No_beam_group_list = [] |
|
for y in range (2, no_of_beams+1): |
|
if no_of_beams % y == 0: |
|
No_beam_group_list.append (y) |
|
|
|
if chosen_strategy == "Diversity Beam Search": |
|
return {beam_groups: gr.Dropdown(No_beam_group_list, value=max(No_beam_group_list), label="Beam groups", info="Divide beams into equal groups", visible=True), |
|
num_return_sequences: gr.Slider(maximum=no_of_beams) |
|
} |
|
if chosen_strategy == "Beam Search": |
|
return {beam_groups: gr.Dropdown(No_beam_group_list, value=max(No_beam_group_list), label="Beam groups", info="Divide beams into equal groups", visible=False), |
|
num_return_sequences: gr.Slider(maximum=no_of_beams) |
|
} |
|
|
|
|
|
|
|
def top_p_switch(input_p_box): |
|
value = input_p_box |
|
if value: |
|
return {top_p: gr.Slider(visible = True)} |
|
else: |
|
return {top_p: gr.Slider(visible = False)} |
|
|
|
|
|
def top_k_switch(input_k_box): |
|
value = input_k_box |
|
if value: |
|
return {top_k: gr.Slider(visible = True)} |
|
else: |
|
return {top_k: gr.Slider(visible = False)} |
|
|
|
|
|
|
|
|
|
def beam_temp_switch (input): |
|
value = input |
|
if value: |
|
return {temperature: gr.Slider (visible=True)} |
|
else: |
|
return {temperature: gr.Slider (visible=False)} |
|
|
|
|
|
|
|
|
|
def select_strategy(input_strategy): |
|
|
|
global chosen_strategy |
|
chosen_strategy = input_strategy |
|
|
|
if chosen_strategy == "Beam Search": |
|
return {n_beams: gr.Slider(visible=True), |
|
num_return_sequences: gr.Slider(visible=True), |
|
beam_temperature: gr.Checkbox(visible=True), |
|
early_stopping: gr.Checkbox(visible=True), |
|
length_penalty: gr.Slider(visible=True), |
|
beam_groups: gr.Dropdown(visible=False), |
|
diversity_penalty: gr.Slider(visible=False), |
|
temperature: gr.Slider (visible=False), |
|
top_k: gr.Slider(visible=False), |
|
top_p: gr.Slider(visible=False), |
|
top_k_box: gr.Checkbox(visible = False), |
|
top_p_box: gr.Checkbox(visible = False), |
|
penalty_alpha: gr.Slider (visible=False) |
|
|
|
} |
|
if chosen_strategy == "Sampling": |
|
if top_k_box == True: |
|
{top_k: gr.Slider(visible = True)} |
|
if top_p_box == True: |
|
{top_p: gr.Slider(visible = True)} |
|
|
|
return { |
|
temperature: gr.Slider (visible=True), |
|
top_p: gr.Slider(visible=False), |
|
top_k: gr.Slider(visible=False), |
|
n_beams: gr.Slider(visible=False), |
|
beam_groups: gr.Dropdown(visible=False), |
|
diversity_penalty: gr.Slider(visible=False), |
|
num_return_sequences: gr.Slider(visible=False), |
|
beam_temperature: gr.Checkbox(visible=False), |
|
early_stopping: gr.Checkbox(visible=False), |
|
length_penalty: gr.Slider(visible=False), |
|
top_p_box: gr.Checkbox(visible = True, value=False), |
|
top_k_box: gr.Checkbox(visible = True, value=False), |
|
penalty_alpha: gr.Slider (visible=False) |
|
} |
|
if chosen_strategy == "Diversity Beam Search": |
|
|
|
return {n_beams: gr.Slider(visible=True), |
|
beam_groups: gr.Dropdown(visible=True), |
|
diversity_penalty: gr.Slider(visible=True), |
|
num_return_sequences: gr.Slider(visible=True), |
|
length_penalty: gr.Slider(visible=True), |
|
beam_temperature: gr.Checkbox(visible=False), |
|
early_stopping: gr.Checkbox(visible=True), |
|
temperature: gr.Slider (visible=False), |
|
top_k: gr.Slider(visible=False), |
|
top_p: gr.Slider(visible=False), |
|
top_k_box: gr.Checkbox(visible = False), |
|
top_p_box: gr.Checkbox(visible = False), |
|
penalty_alpha: gr.Slider (visible=False), |
|
} |
|
|
|
if chosen_strategy == "Contrastive": |
|
if top_k_box: |
|
{top_k: gr.Slider(visible = True)} |
|
|
|
return { |
|
temperature: gr.Slider (visible=True), |
|
penalty_alpha: gr.Slider (visible=True), |
|
top_p: gr.Slider(visible=False), |
|
|
|
|
|
n_beams: gr.Slider(visible=False), |
|
beam_groups: gr.Dropdown(visible=False), |
|
diversity_penalty: gr.Slider(visible=False), |
|
num_return_sequences: gr.Slider(visible=False), |
|
beam_temperature: gr.Checkbox(visible=False), |
|
early_stopping: gr.Checkbox(visible=False), |
|
length_penalty: gr.Slider(visible=False), |
|
top_p_box: gr.Checkbox(visible = False), |
|
top_k_box: gr.Checkbox(visible = True) |
|
} |
|
|
|
def clear(): |
|
print ("") |
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
No_beam_group_list = [2] |
|
text = gr.Textbox( |
|
label="Prompt", |
|
value="It's a rainy day today", |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") |
|
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", pad_token_id=tokenizer.eos_token_id) |
|
|
|
|
|
with gr.Row(): |
|
|
|
with gr.Column (scale=0, min_width=200) as Models_Strategy: |
|
|
|
model_selected = gr.Radio (["gpt2", "Gemma 2"], label="ML Model", value="gpt2") |
|
strategy_selected = gr.Radio (["Sampling", "Beam Search", "Diversity Beam Search","Contrastive"], label="Search strategy", value = "Sampling", interactive=True) |
|
|
|
|
|
with gr.Column (scale=0, min_width=250) as Beam_Params: |
|
n_steps = gr.Slider( |
|
label="Number of steps/tokens", minimum=1, maximum=100, step=1, value=20 |
|
) |
|
n_beams = gr.Slider( |
|
label="Number of beams", minimum=2, maximum=100, step=1, value=4, visible=False |
|
) |
|
|
|
|
|
|
|
beam_groups = gr.Dropdown(No_beam_group_list, value=2, label="Beam groups", info="Divide beams into equal groups", visible=False |
|
) |
|
|
|
diversity_penalty = gr.Slider( |
|
label="Group diversity penalty", minimum=0.1, maximum=2, step=0.1, value=0.8, visible=False |
|
) |
|
|
|
num_return_sequences = gr.Slider( |
|
label="Number of return sequences", minimum=1, maximum=3, step=1, value=2, visible=False |
|
) |
|
temperature = gr.Slider( |
|
label="Temperature", minimum=0.1, maximum=3, step=0.1, value=0.6, visible = True |
|
) |
|
|
|
top_k = gr.Slider( |
|
label="Top_K", minimum=1, maximum=50, step=1, value=5, visible = False |
|
) |
|
top_p = gr.Slider( |
|
label="Top_P", minimum=0.1, maximum=3, step=0.1, value=0.3, visible = False |
|
) |
|
|
|
penalty_alpha = gr.Slider( |
|
label="Contrastive penalty α", minimum=0.1, maximum=2, step=0.1, value=0.6, visible=False |
|
) |
|
|
|
top_p_box = gr.Checkbox(label="Top P", info="Turn on Top P", visible = True, interactive=True) |
|
top_k_box = gr.Checkbox(label="Top K", info="Turn on Top K", visible = True, interactive=True) |
|
|
|
|
|
early_stopping = gr.Checkbox(label="Early stopping", info="Stop with heuristically chosen good result", visible = False, interactive=True) |
|
beam_temperature = gr.Checkbox(label="Beam Temperature", info="Turn on sampling", visible = False, interactive=True) |
|
|
|
with gr.Column(scale=0, min_width=200): |
|
|
|
length_penalty = gr.Slider( |
|
label="Length penalty", minimum=-3, maximum=3, step=0.5, value=0, info="'+' more, '-' less no. of words", visible = False, interactive=True |
|
) |
|
|
|
no_repeat_ngram_size = gr.Slider( |
|
label="No repeat n-gram phrase size", minimum=0, maximum=8, step=1, value=4, info="Not to repeat 'n' words" |
|
) |
|
repetition_penalty = gr.Slider( |
|
label="Repetition penalty", minimum=0, maximum=3, step=1, value=float(0), info="Prior context based penalty for unique text" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
model_selected.change( |
|
fn=load_model, inputs=[model_selected], outputs=[] |
|
) |
|
|
|
|
|
|
|
|
|
|
|
n_beams.change( |
|
fn=popualate_beam_groups, inputs=[n_beams], outputs=[beam_groups,num_return_sequences] |
|
) |
|
|
|
strategy_selected.change(fn=select_strategy, inputs=strategy_selected, outputs=[n_beams,beam_groups,length_penalty,diversity_penalty,num_return_sequences,temperature,early_stopping,beam_temperature,penalty_alpha,top_p,top_k,top_p_box,top_k_box]) |
|
|
|
beam_temperature.change (fn=beam_temp_switch, inputs=beam_temperature, outputs=temperature) |
|
|
|
top_p_box.change (fn=top_p_switch, inputs=top_p_box, outputs=top_p) |
|
|
|
top_k_box.change (fn=top_k_switch, inputs=top_k_box, outputs=top_k) |
|
|
|
|
|
|
|
|
|
button = gr.Button("Generate") |
|
out_markdown = gr.Textbox() |
|
|
|
|
|
button.click( |
|
fn = generate, |
|
inputs=[text, n_steps, n_beams, beam_groups, diversity_penalty, length_penalty, num_return_sequences, temperature, no_repeat_ngram_size, repetition_penalty, early_stopping, beam_temperature, top_p, top_k,penalty_alpha,top_p_box,top_k_box,strategy_selected,model_selected], |
|
outputs=[out_markdown] |
|
) |
|
|
|
cleared = gr.Button ("Clear") |
|
cleared.click (fn=clear, inputs=[], outputs=[out_markdown]) |
|
|
|
|
|
|
|
demo.launch() |
|
|
|
|