Spaces:
Sleeping
Sleeping
Amitontheweb
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ import gradio as gr
|
|
10 |
|
11 |
|
12 |
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
13 |
-
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
|
14 |
|
15 |
|
16 |
# Define functions
|
@@ -21,7 +21,7 @@ global chosen_strategy
|
|
21 |
def generate(input_text, number_steps, number_beams, number_beam_groups, diversity_penalty, length_penalty, num_return_sequences, temperature, no_repeat_ngram_size, repetition_penalty, early_stopping, beam_temperature, top_p, top_k,penalty_alpha,top_p_box,top_k_box,strategy_selected,model_selected):
|
22 |
|
23 |
chosen_strategy = strategy_selected
|
24 |
-
inputs = tokenizer(input_text, return_tensors="pt")
|
25 |
|
26 |
if chosen_strategy == "Sampling":
|
27 |
|
@@ -47,7 +47,7 @@ def generate(input_text, number_steps, number_beams, number_beam_groups, diversi
|
|
47 |
beam_temp_flag = beam_temperature
|
48 |
early_stop_flag = early_stopping
|
49 |
|
50 |
-
inputs = tokenizer(input_text, return_tensors="pt")
|
51 |
outputs = model.generate(
|
52 |
|
53 |
**inputs,
|
@@ -82,7 +82,7 @@ def generate(input_text, number_steps, number_beams, number_beam_groups, diversi
|
|
82 |
if number_beam_groups > number_beams:
|
83 |
number_beams = number_beam_groups
|
84 |
|
85 |
-
inputs = tokenizer(input_text, return_tensors="pt")
|
86 |
outputs = model.generate(
|
87 |
|
88 |
**inputs,
|
@@ -130,12 +130,12 @@ def load_model(model_selected):
|
|
130 |
|
131 |
if model_selected == "gpt2":
|
132 |
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
133 |
-
model = AutoModelForCausalLM.from_pretrained("gpt2", pad_token_id=tokenizer.eos_token_id)
|
134 |
#print (model_selected + " loaded")
|
135 |
|
136 |
if model_selected == "Gemma 2":
|
137 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
138 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b")
|
139 |
|
140 |
|
141 |
|
|
|
10 |
|
11 |
|
12 |
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
13 |
+
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
|
14 |
|
15 |
|
16 |
# Define functions
|
|
|
21 |
def generate(input_text, number_steps, number_beams, number_beam_groups, diversity_penalty, length_penalty, num_return_sequences, temperature, no_repeat_ngram_size, repetition_penalty, early_stopping, beam_temperature, top_p, top_k,penalty_alpha,top_p_box,top_k_box,strategy_selected,model_selected):
|
22 |
|
23 |
chosen_strategy = strategy_selected
|
24 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
25 |
|
26 |
if chosen_strategy == "Sampling":
|
27 |
|
|
|
47 |
beam_temp_flag = beam_temperature
|
48 |
early_stop_flag = early_stopping
|
49 |
|
50 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
51 |
outputs = model.generate(
|
52 |
|
53 |
**inputs,
|
|
|
82 |
if number_beam_groups > number_beams:
|
83 |
number_beams = number_beam_groups
|
84 |
|
85 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
86 |
outputs = model.generate(
|
87 |
|
88 |
**inputs,
|
|
|
130 |
|
131 |
if model_selected == "gpt2":
|
132 |
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
133 |
+
model = AutoModelForCausalLM.from_pretrained("gpt2", pad_token_id=tokenizer.eos_token_id)
|
134 |
#print (model_selected + " loaded")
|
135 |
|
136 |
if model_selected == "Gemma 2":
|
137 |
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
138 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b")
|
139 |
|
140 |
|
141 |
|