import numpy as np def N_to_reso(n_voxels, bbox): xyz_min, xyz_max = bbox dim = len(xyz_min) voxel_size = ((xyz_max - xyz_min).prod() / n_voxels).pow(1 / dim) return ((xyz_max - xyz_min) / voxel_size).long().tolist() def cal_n_samples(reso, step_ratio=0.5): return int(np.linalg.norm(reso)/step_ratio)