File size: 9,284 Bytes
6f0136b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image

# Define model classes (same as before)
class SimpleGate(nn.Module):
    def forward(self, x):
        x1, x2 = x.chunk(2, dim=-1)
        return x1 * x2

class ASPP(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(ASPP, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
        self.conv2 = nn.Conv2d(in_channels, out_channels, 3, padding=6, dilation=6, bias=False)
        self.conv3 = nn.Conv2d(in_channels, out_channels, 3, padding=12, dilation=12, bias=False)
        self.conv4 = nn.Conv2d(in_channels, out_channels, 3, padding=18, dilation=18, bias=False)
        self.pool = nn.AdaptiveAvgPool2d(1)
        self.conv5 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
        self.conv_out = nn.Conv2d(out_channels * 5, out_channels, 1, bias=False)
        self.norm = nn.LayerNorm(out_channels)
        self.act = nn.SiLU()

    def forward(self, x):
        size = x.shape[-2:]
        feat1 = self.conv1(x)
        feat2 = self.conv2(x)
        feat3 = self.conv3(x)
        feat4 = self.conv4(x)
        feat5 = F.interpolate(self.conv5(self.pool(x)), size=size, mode='bilinear', align_corners=False)
        out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
        out = self.conv_out(out)
        out = out.permute(0, 2, 3, 1)  # Change to (B, H, W, C)
        out = self.norm(out)
        out = out.permute(0, 3, 1, 2)  # Change back to (B, C, H, W)
        return self.act(out)

class ChannelwiseSelfAttention(nn.Module):
    def __init__(self, dim):
        super(ChannelwiseSelfAttention, self).__init__()
        self.dim = dim
        self.query_conv = nn.Linear(dim, dim)
        self.key_conv = nn.Linear(dim, dim)
        self.value_conv = nn.Linear(dim, dim)
        self.scale = dim ** -0.5
        self.pos_embedding = nn.Parameter(torch.randn(1, 1, 1, dim))

    def forward(self, x):
        # x: (B, H, W, C)
        B, H, W, C = x.shape
        x = x + self.pos_embedding  # Positional embedding
        x = x.view(B, H * W, C)     # Reshape to (B, N, C)

        # Linear projections
        q = self.query_conv(x)      # (B, N, C)
        k = self.key_conv(x)        # (B, N, C)
        v = self.value_conv(x)      # (B, N, C)

        # Compute attention over channels at each spatial location
        q = q.view(B, H * W, 1, C)  # (B, N, 1, C)
        k = k.view(B, H * W, C, 1)  # (B, N, C, 1)
        attn = torch.matmul(q, k).squeeze(2) * self.scale  # (B, N, C)
        attn = attn.softmax(dim=-1)  # Softmax over channels

        # Apply attention to values
        out = attn * v               # Element-wise multiplication
        out = out.view(B, H, W, C)   # Reshape back to (B, H, W, C)
        return out

class EnhancedSS2D(nn.Module):
    def __init__(self, d_model, d_state=16, d_conv=3, expand=2., dt_rank=64, dt_min=0.001, dt_max=0.1, dt_init="random", dt_scale=1.0):
        super().__init__()
        self.d_model = d_model
        self.d_state = d_state
        self.d_conv = d_conv
        self.expand = expand
        self.d_inner = int(self.expand * self.d_model)  # self.d_inner = 2 * d_model
        self.dt_rank = dt_rank

        self.in_proj = nn.Linear(self.d_model, self.d_inner * 2)
        self.conv2d = nn.Conv2d(self.d_inner, self.d_inner, kernel_size=d_conv, padding=(d_conv - 1) // 2, groups=self.d_inner)
        self.act = nn.SiLU()

        self.x_proj = nn.Linear(self.d_inner, self.d_inner * 2)
        self.dt_proj = nn.Linear(self.d_inner, self.d_inner)

        self.out_norm = nn.LayerNorm(self.d_inner)

        # Update here
        self.out_proj = nn.Linear(self.d_inner // 2, d_model)

        # New components
        self.simple_gate = SimpleGate()
        self.aspp = ASPP(d_model, d_model)
        self.channel_attn = ChannelwiseSelfAttention(d_model)

    def forward(self, x):
        B, H, W, C = x.shape
        
        # Apply ASPP
        x_aspp = self.aspp(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
        
        # Original SS2D operations
        x = self.in_proj(x)
        x, z = x.chunk(2, dim=-1)
        x = x.permute(0, 3, 1, 2)
        x = self.conv2d(x)
        x = x.permute(0, 2, 3, 1)
        x = self.act(x)
        y = self.selective_scan(x)
        y = self.out_norm(y)
        y = y * F.silu(z)
        
        # Apply SimpleGate
        y = self.simple_gate(y)
        
        # Apply Channel-wise Self-Attention
        y = self.channel_attn(y)
        
        # Combine with ASPP output
        y = y + x_aspp
        
        out = self.out_proj(y)
        return out

    def selective_scan(self, x):
        B, H, W, C = x.shape
        x_flat = x.reshape(B, H*W, C)
        x_dbl = self.x_proj(x_flat)
        x_dbl = x_dbl.view(B, H, W, -1)
        dt, x_proj = x_dbl.chunk(2, dim=-1)
        dt = F.softplus(self.dt_proj(dt))
        y = x * torch.sigmoid(dt) + x_proj * torch.tanh(x_proj)
        return y

class EnhancedVSSBlock(nn.Module):
    def __init__(self, d_model, d_state=16):
        super().__init__()
        self.ln_1 = nn.LayerNorm(d_model)
        self.ss2d = EnhancedSS2D(d_model, d_state)
        self.ln_2 = nn.LayerNorm(d_model)
        self.conv_blk = nn.Sequential(
            nn.Conv2d(d_model, d_model, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(d_model, d_model, kernel_size=3, padding=1)
        )

    def forward(self, x):
        residual = x
        x = self.ln_1(x)
        x = residual + self.ss2d(x)
        residual = x
        x = self.ln_2(x)
        x = x.permute(0, 3, 1, 2)
        x = self.conv_blk(x)
        x = x.permute(0, 2, 3, 1)
        x = residual + x
        return x

class MambaIRShadowRemoval(nn.Module):
    def __init__(self, img_channel=3, width=32, middle_blk_num=1, enc_blk_nums=[1, 1, 1, 1], dec_blk_nums=[1, 1, 1, 1], d_state=64):
        super().__init__()
        self.intro = nn.Conv2d(img_channel, width, kernel_size=3, padding=1, stride=1, groups=1, bias=True)
        self.ending = nn.Conv2d(width, img_channel, kernel_size=3, padding=1, stride=1, groups=1, bias=True)

        self.encoders = nn.ModuleList()
        self.decoders = nn.ModuleList()
        self.middle_blks = nn.ModuleList()
        self.ups = nn.ModuleList()
        self.downs = nn.ModuleList()

        chan = width
        for num in enc_blk_nums:
            self.encoders.append(
                nn.Sequential(*[EnhancedVSSBlock(chan, d_state) for _ in range(num)])
            )
            self.downs.append(nn.Conv2d(chan, 2*chan, 2, 2))
            chan = chan * 2

        self.middle_blks = nn.Sequential(
            *[EnhancedVSSBlock(chan, d_state) for _ in range(middle_blk_num)]
        )

        for num in dec_blk_nums:
            self.ups.append(nn.Sequential(
                nn.Conv2d(chan, chan * 2, 1, bias=False),
                nn.PixelShuffle(2)
            ))
            chan = chan // 2
            self.decoders.append(
                nn.Sequential(*[EnhancedVSSBlock(chan, d_state) for _ in range(num)])
            )

        self.padder_size = 2 ** len(self.encoders)

    def forward(self, inp):
        B, C, H, W = inp.shape
        inp = self.check_image_size(inp)
        x = self.intro(inp)
        x = x.permute(0, 2, 3, 1)

        encs = []
        for encoder, down in zip(self.encoders, self.downs):
            x = encoder(x)
            encs.append(x)
            x = x.permute(0, 3, 1, 2)
            x = down(x)
            x = x.permute(0, 2, 3, 1)

        x = self.middle_blks(x)

        for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]):
            x = x.permute(0, 3, 1, 2)
            x = up(x)
            x = x.permute(0, 2, 3, 1)
            x = x + enc_skip
            x = decoder(x)

        x = x.permute(0, 3, 1, 2)
        x = self.ending(x)
        x = x + inp

        return x[:, :, :H, :W]

    def check_image_size(self, x):
        _, _, h, w = x.size()
        mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size
        mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size
        x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h))
        return x
    

    
# Load the model with weights
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = MambaIRShadowRemoval(img_channel=3, width=32, middle_blk_num=1, enc_blk_nums=[1, 1, 1, 1], dec_blk_nums=[1, 1, 1, 1], d_state=64)
model.load_state_dict(torch.load("shadow_removal_model.pth", map_location=device))
model.to(device)
model.eval()

# Define the Gradio function
transform = transforms.Compose([transforms.ToTensor()])

def remove_shadow(image):
    input_tensor = transform(image).unsqueeze(0).to(device)
    with torch.no_grad():
        output_tensor = model(input_tensor)
    output_image = transforms.ToPILImage()(output_tensor.squeeze(0).cpu())
    return output_image

# Set up Gradio interface
iface = gr.Interface(
    fn=remove_shadow,
    inputs=gr.Image(type="pil"),
    outputs=gr.Image(type="pil"),
    title="Shadow Removal Model",
    description="Upload an image to remove shadows using the trained model."
)

iface.launch()