AnasHXH's picture
fixed
05b8e53 verified
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
# Define model classes (same as before)
class SimpleGate(nn.Module):
def forward(self, x):
x1, x2 = x.chunk(2, dim=-1)
return x1 * x2
class ASPP(nn.Module):
def __init__(self, in_channels, out_channels):
super(ASPP, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, padding=6, dilation=6, bias=False)
self.conv3 = nn.Conv2d(in_channels, out_channels, 3, padding=12, dilation=12, bias=False)
self.conv4 = nn.Conv2d(in_channels, out_channels, 3, padding=18, dilation=18, bias=False)
self.pool = nn.AdaptiveAvgPool2d(1)
self.conv5 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
self.conv_out = nn.Conv2d(out_channels * 5, out_channels, 1, bias=False)
self.norm = nn.LayerNorm(out_channels)
self.act = nn.SiLU()
def forward(self, x):
size = x.shape[-2:]
feat1 = self.conv1(x)
feat2 = self.conv2(x)
feat3 = self.conv3(x)
feat4 = self.conv4(x)
feat5 = F.interpolate(self.conv5(self.pool(x)), size=size, mode='bilinear', align_corners=False)
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
out = self.conv_out(out)
out = out.permute(0, 2, 3, 1) # Change to (B, H, W, C)
out = self.norm(out)
out = out.permute(0, 3, 1, 2) # Change back to (B, C, H, W)
return self.act(out)
class ChannelwiseSelfAttention(nn.Module):
def __init__(self, dim):
super(ChannelwiseSelfAttention, self).__init__()
self.dim = dim
self.query_conv = nn.Linear(dim, dim)
self.key_conv = nn.Linear(dim, dim)
self.value_conv = nn.Linear(dim, dim)
self.scale = dim ** -0.5
self.pos_embedding = nn.Parameter(torch.randn(1, 1, 1, dim))
def forward(self, x):
# x: (B, H, W, C)
B, H, W, C = x.shape
x = x + self.pos_embedding # Positional embedding
x = x.view(B, H * W, C) # Reshape to (B, N, C)
# Linear projections
q = self.query_conv(x) # (B, N, C)
k = self.key_conv(x) # (B, N, C)
v = self.value_conv(x) # (B, N, C)
# Compute attention over channels at each spatial location
q = q.view(B, H * W, 1, C) # (B, N, 1, C)
k = k.view(B, H * W, C, 1) # (B, N, C, 1)
attn = torch.matmul(q, k).squeeze(2) * self.scale # (B, N, C)
attn = attn.softmax(dim=-1) # Softmax over channels
# Apply attention to values
out = attn * v # Element-wise multiplication
out = out.view(B, H, W, C) # Reshape back to (B, H, W, C)
return out
class EnhancedSS2D(nn.Module):
def __init__(self, d_model, d_state=16, d_conv=3, expand=2., dt_rank=64, dt_min=0.001, dt_max=0.1, dt_init="random", dt_scale=1.0):
super().__init__()
self.d_model = d_model
self.d_state = d_state
self.d_conv = d_conv
self.expand = expand
self.d_inner = int(self.expand * self.d_model) # self.d_inner = 2 * d_model
self.dt_rank = dt_rank
self.in_proj = nn.Linear(self.d_model, self.d_inner * 2)
self.conv2d = nn.Conv2d(self.d_inner, self.d_inner, kernel_size=d_conv, padding=(d_conv - 1) // 2, groups=self.d_inner)
self.act = nn.SiLU()
self.x_proj = nn.Linear(self.d_inner, self.d_inner * 2)
self.dt_proj = nn.Linear(self.d_inner, self.d_inner)
self.out_norm = nn.LayerNorm(self.d_inner)
# Update here
self.out_proj = nn.Linear(self.d_inner // 2, d_model)
# New components
self.simple_gate = SimpleGate()
self.aspp = ASPP(d_model, d_model)
self.channel_attn = ChannelwiseSelfAttention(d_model)
def forward(self, x):
B, H, W, C = x.shape
# Apply ASPP
x_aspp = self.aspp(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
# Original SS2D operations
x = self.in_proj(x)
x, z = x.chunk(2, dim=-1)
x = x.permute(0, 3, 1, 2)
x = self.conv2d(x)
x = x.permute(0, 2, 3, 1)
x = self.act(x)
y = self.selective_scan(x)
y = self.out_norm(y)
y = y * F.silu(z)
# Apply SimpleGate
y = self.simple_gate(y)
# Apply Channel-wise Self-Attention
y = self.channel_attn(y)
# Combine with ASPP output
y = y + x_aspp
out = self.out_proj(y)
return out
def selective_scan(self, x):
B, H, W, C = x.shape
x_flat = x.reshape(B, H*W, C)
x_dbl = self.x_proj(x_flat)
x_dbl = x_dbl.view(B, H, W, -1)
dt, x_proj = x_dbl.chunk(2, dim=-1)
dt = F.softplus(self.dt_proj(dt))
y = x * torch.sigmoid(dt) + x_proj * torch.tanh(x_proj)
return y
class EnhancedVSSBlock(nn.Module):
def __init__(self, d_model, d_state=16):
super().__init__()
self.ln_1 = nn.LayerNorm(d_model)
self.ss2d = EnhancedSS2D(d_model, d_state)
self.ln_2 = nn.LayerNorm(d_model)
self.conv_blk = nn.Sequential(
nn.Conv2d(d_model, d_model, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(d_model, d_model, kernel_size=3, padding=1)
)
def forward(self, x):
residual = x
x = self.ln_1(x)
x = residual + self.ss2d(x)
residual = x
x = self.ln_2(x)
x = x.permute(0, 3, 1, 2)
x = self.conv_blk(x)
x = x.permute(0, 2, 3, 1)
x = residual + x
return x
class MambaIRShadowRemoval(nn.Module):
def __init__(self, img_channel=3, width=32, middle_blk_num=1, enc_blk_nums=[1, 1, 1, 1], dec_blk_nums=[1, 1, 1, 1], d_state=64):
super().__init__()
self.intro = nn.Conv2d(img_channel, width, kernel_size=3, padding=1, stride=1, groups=1, bias=True)
self.ending = nn.Conv2d(width, img_channel, kernel_size=3, padding=1, stride=1, groups=1, bias=True)
self.encoders = nn.ModuleList()
self.decoders = nn.ModuleList()
self.middle_blks = nn.ModuleList()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
chan = width
for num in enc_blk_nums:
self.encoders.append(
nn.Sequential(*[EnhancedVSSBlock(chan, d_state) for _ in range(num)])
)
self.downs.append(nn.Conv2d(chan, 2*chan, 2, 2))
chan = chan * 2
self.middle_blks = nn.Sequential(
*[EnhancedVSSBlock(chan, d_state) for _ in range(middle_blk_num)]
)
for num in dec_blk_nums:
self.ups.append(nn.Sequential(
nn.Conv2d(chan, chan * 2, 1, bias=False),
nn.PixelShuffle(2)
))
chan = chan // 2
self.decoders.append(
nn.Sequential(*[EnhancedVSSBlock(chan, d_state) for _ in range(num)])
)
self.padder_size = 2 ** len(self.encoders)
def forward(self, inp):
B, C, H, W = inp.shape
inp = self.check_image_size(inp)
x = self.intro(inp)
x = x.permute(0, 2, 3, 1)
encs = []
for encoder, down in zip(self.encoders, self.downs):
x = encoder(x)
encs.append(x)
x = x.permute(0, 3, 1, 2)
x = down(x)
x = x.permute(0, 2, 3, 1)
x = self.middle_blks(x)
for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]):
x = x.permute(0, 3, 1, 2)
x = up(x)
x = x.permute(0, 2, 3, 1)
x = x + enc_skip
x = decoder(x)
x = x.permute(0, 3, 1, 2)
x = self.ending(x)
x = x + inp
return x[:, :, :H, :W]
def check_image_size(self, x):
_, _, h, w = x.size()
mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size
mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h))
return x
# Load the model with weights
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Define function to load model with specified weights
def load_model(weights_path):
model = MambaIRShadowRemoval(img_channel=3, width=32, middle_blk_num=1, enc_blk_nums=[1, 1, 1, 1], dec_blk_nums=[1, 1, 1, 1], d_state=64)
model.load_state_dict(torch.load(weights_path, map_location=device))
model.to(device)
model.eval()
return model
# Preload models for ISTD+ and SRD
models = {
"ISTD+": load_model("ISTD+.pth"),
"SRD": load_model("SRD.pth")
}
# Define transformation
transform = transforms.Compose([
transforms.ToTensor(),
])
# Define function to perform shadow removal
def remove_shadow(image, dataset):
model = models[dataset] # Select the appropriate model based on dataset choice
input_tensor = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
output_tensor = model(input_tensor)
output_image = transforms.ToPILImage()(output_tensor.squeeze(0).cpu())
return output_image
# Define example paths for ISTD+ and SRD
examples = [
["ISTD+.png", "ISTD+"],
["SRD.jpg", "SRD"]
]
# Gradio Interface with dropdown and examples
with gr.Blocks() as iface:
gr.Markdown("## Shadow Removal Model")
gr.Markdown("Upload an image to remove shadows using the trained model. Choose the dataset to load the corresponding weights and example images.")
with gr.Row():
dataset_choice = gr.Dropdown(["ISTD+", "SRD"], label="Choose Dataset", value="ISTD+")
example_image = gr.Image(type="pil", label="Input Image")
output_image = gr.Image(type="pil", label="Output Image")
# Display examples and map them to dataset and images
gr.Examples(
examples=examples,
inputs=[example_image, dataset_choice],
label="Examples",
)
submit_btn = gr.Button("Submit")
submit_btn.click(remove_shadow, inputs=[example_image, dataset_choice], outputs=output_image)
iface.launch()