File size: 10,356 Bytes
56bd2b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# Copyright (c) Meta Platforms, Inc. and affiliates
import itertools
import logging
import numpy as np
import math
from collections import defaultdict
import torch.utils.data
from detectron2.config import configurable
from detectron2.utils.logger import _log_api_usage
from detectron2.data.catalog import DatasetCatalog
from detectron2.data.common import DatasetFromList, MapDataset
from detectron2.data.dataset_mapper import DatasetMapper
from detectron2.data.samplers import (
InferenceSampler,
RepeatFactorTrainingSampler,
TrainingSampler
)
from detectron2.data.build import (
build_batch_data_loader,
trivial_batch_collator
)
def filter_images_with_only_crowd_annotations(dataset_dicts):
"""
Filter out images with none annotations or only crowd annotations
(i.e., images without non-crowd annotations).
A common training-time preprocessing on COCO dataset.
Args:
dataset_dicts (list[dict]): annotations in Detectron2 Dataset format.
Returns:
list[dict]: the same format, but filtered.
"""
num_before = len(dataset_dicts)
def valid(anns):
for ann in anns:
if ann.get("iscrowd", 0) == 0:
return True
return False
dataset_dicts = [x for x in dataset_dicts if valid(x["annotations"])]
num_after = len(dataset_dicts)
logger = logging.getLogger(__name__)
logger.info(
"Removed {} images marked with crowd. {} images left.".format(
num_before - num_after, num_after
)
)
return dataset_dicts
def get_detection_dataset_dicts(names, filter_empty=True, **kwargs):
if isinstance(names, str):
names = [names]
assert len(names), names
dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in names]
for dataset_name, dicts in zip(names, dataset_dicts):
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts))
has_instances = "annotations" in dataset_dicts[0]
if filter_empty and has_instances:
dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts)
assert len(dataset_dicts), "No valid data found in {}.".format(",".join(names))
return dataset_dicts
def _train_loader_from_config(cfg, mapper=None, *, dataset=None, sampler=None, dataset_id_to_src=None):
if dataset is None:
dataset = get_detection_dataset_dicts(
cfg.DATASETS.TRAIN,
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
if cfg.MODEL.KEYPOINT_ON
else 0,
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
)
_log_api_usage("dataset." + cfg.DATASETS.TRAIN[0])
if mapper is None:
mapper = DatasetMapper(cfg, True)
if sampler is None:
sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
balance_datasets = cfg.DATALOADER.BALANCE_DATASETS
logger = logging.getLogger(__name__)
logger.info("Using training sampler {}".format(sampler_name))
if balance_datasets:
assert dataset_id_to_src is not None, 'Need dataset sources.'
dataset_source_to_int = {val:i for i, val in enumerate(set(dataset_id_to_src.values()))}
dataset_ids_per_img = [dataset_source_to_int[dataset_id_to_src[img['dataset_id']]] for img in dataset]
dataset_ids = np.unique(dataset_ids_per_img)
# only one source? don't re-weight then.
if len(dataset_ids) == 1:
weights_per_img = torch.ones(len(dataset_ids_per_img)).float()
# compute per-dataset weights.
else:
counts = np.bincount(dataset_ids_per_img)
counts = [counts[id] for id in dataset_ids]
weights = [1 - count/np.sum(counts) for count in counts]
weights = [weight/np.min(weights) for weight in weights]
weights_per_img = torch.zeros(len(dataset_ids_per_img)).float()
dataset_ids_per_img = torch.FloatTensor(dataset_ids_per_img).long()
# copy weights
for dataset_id, weight in zip(dataset_ids, weights):
weights_per_img[dataset_ids_per_img == dataset_id] = weight
# no special sampling whatsoever
if sampler_name == "TrainingSampler" and not balance_datasets:
sampler = TrainingSampler(len(dataset))
# balance the weight sampling by datasets
elif sampler_name == "TrainingSampler" and balance_datasets:
sampler = RepeatFactorTrainingSampler(weights_per_img)
# balance the weight sampling by categories
elif sampler_name == "RepeatFactorTrainingSampler" and not balance_datasets:
repeat_factors = repeat_factors_from_category_frequency(
dataset, cfg.DATALOADER.REPEAT_THRESHOLD
)
sampler = RepeatFactorTrainingSampler(repeat_factors)
# balance the weight sampling by categories AND by dataset frequency
elif sampler_name == "RepeatFactorTrainingSampler" and balance_datasets:
repeat_factors = repeat_factors_from_category_frequency(
dataset, cfg.DATALOADER.REPEAT_THRESHOLD
)
repeat_factors *= weights_per_img
repeat_factors /= repeat_factors.min().item()
sampler = RepeatFactorTrainingSampler(repeat_factors)
else:
raise ValueError("Unknown training sampler: {}".format(sampler_name))
return {
"dataset": dataset,
"sampler": sampler,
"mapper": mapper,
"total_batch_size": cfg.SOLVER.IMS_PER_BATCH,
"aspect_ratio_grouping": cfg.DATALOADER.ASPECT_RATIO_GROUPING,
"num_workers": cfg.DATALOADER.NUM_WORKERS,
}
def repeat_factors_from_category_frequency(dataset_dicts, repeat_thresh):
"""
Compute (fractional) per-image repeat factors based on category frequency.
The repeat factor for an image is a function of the frequency of the rarest
category labeled in that image. The "frequency of category c" in [0, 1] is defined
as the fraction of images in the training set (without repeats) in which category c
appears.
See :paper:`lvis` (>= v2) Appendix B.2.
Args:
dataset_dicts (list[dict]): annotations in Detectron2 dataset format.
repeat_thresh (float): frequency threshold below which data is repeated.
If the frequency is half of `repeat_thresh`, the image will be
repeated twice.
Returns:
torch.Tensor:
the i-th element is the repeat factor for the dataset image at index i.
"""
# 1. For each category c, compute the fraction of images that contain it: f(c)
category_freq = defaultdict(int)
for dataset_dict in dataset_dicts: # For each image (without repeats)
cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]}
for cat_id in cat_ids:
if cat_id < 0: continue
category_freq[cat_id] += 1
num_images = len(dataset_dicts)
for k, v in category_freq.items():
category_freq[k] = v / num_images
# 2. For each category c, compute the category-level repeat factor:
# r(c) = max(1, sqrt(t / f(c)))
category_rep = {
cat_id: max(1.0, math.sqrt(repeat_thresh / cat_freq))
for cat_id, cat_freq in category_freq.items()
}
# 3. For each image I, compute the image-level repeat factor:
# r(I) = max_{c in I} r(c)
rep_factors = []
for dataset_dict in dataset_dicts:
cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]}
rep_factor = max({category_rep[cat_id] for cat_id in cat_ids if cat_id >= 0}, default=1.0)
rep_factors.append(rep_factor)
return torch.tensor(rep_factors, dtype=torch.float32)
@configurable(from_config=_train_loader_from_config)
def build_detection_train_loader(dataset, *, mapper, sampler=None, total_batch_size, aspect_ratio_grouping=True, num_workers=0):
if isinstance(dataset, list):
dataset = DatasetFromList(dataset, copy=False)
if mapper is not None:
dataset = MapDataset(dataset, mapper)
if sampler is None:
sampler = TrainingSampler(len(dataset))
assert isinstance(sampler, torch.utils.data.Sampler)
return build_batch_data_loader(
dataset,
sampler,
total_batch_size,
aspect_ratio_grouping=aspect_ratio_grouping,
num_workers=num_workers
)
def _test_loader_from_config(cfg, dataset_name, batch_size=1, mapper=None, filter_empty=False):
if isinstance(dataset_name, str):
dataset_name = [dataset_name]
dataset = get_detection_dataset_dicts(
dataset_name,
filter_empty=filter_empty,
proposal_files=[
cfg.DATASETS.PROPOSAL_FILES_TEST[list(cfg.DATASETS.TEST).index(x)] for x in dataset_name
]
if cfg.MODEL.LOAD_PROPOSALS
else None,
)
if mapper is None:
mapper = DatasetMapper(cfg, False)
return {"dataset": dataset, "mapper": mapper, 'batch_size':batch_size, "num_workers": cfg.DATALOADER.NUM_WORKERS}
@configurable(from_config=_test_loader_from_config)
def build_detection_test_loader(dataset, *, mapper, batch_size=1, sampler=None, num_workers=0):
if isinstance(dataset, list):
dataset = DatasetFromList(dataset, copy=False)
if mapper is not None:
dataset = MapDataset(dataset, mapper)
if sampler is None:
sampler = InferenceSampler(len(dataset))
# Always use 1 image per worker during inference since this is the
# standard when reporting inference time in papers.
batch_sampler = torch.utils.data.BatchSampler(sampler, batch_size=batch_size, drop_last=False)
data_loader = torch.utils.data.DataLoader(
dataset,
num_workers=num_workers,
batch_sampler=batch_sampler,
collate_fn=trivial_batch_collator,
)
return data_loader
|