File size: 29,638 Bytes
56bd2b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 |
# Copyright (c) Meta Platforms, Inc. and affiliates
import cv2
import numpy as np
import matplotlib.pyplot as plt
import os
import math
import torch
from copy import deepcopy
from pytorch3d.structures.meshes import join_meshes_as_scene
from pytorch3d.transforms.so3 import (
so3_relative_angle,
)
from matplotlib.path import Path
from cubercnn import util
def interp_color(dist, bounds=[0, 1], color_lo=(0,0, 250), color_hi=(0, 250, 250)):
percent = (dist - bounds[0]) / (bounds[1] - bounds[0])
b = color_lo[0] * (1 - percent) + color_hi[0] * percent
g = color_lo[1] * (1 - percent) + color_hi[1] * percent
r = color_lo[2] * (1 - percent) + color_hi[2] * percent
return (b, g, r)
def draw_bev(canvas_bev, z3d, l3d, w3d, x3d, ry3d, color=(0, 200, 200), scale=1, thickness=2):
w = l3d * scale
l = w3d * scale
x = x3d * scale
z = z3d * scale
r = ry3d*-1
corners1 = np.array([
[-w / 2, -l / 2, 1],
[+w / 2, -l / 2, 1],
[+w / 2, +l / 2, 1],
[-w / 2, +l / 2, 1]
])
ry = np.array([
[+math.cos(r), -math.sin(r), 0],
[+math.sin(r), math.cos(r), 0],
[0, 0, 1],
])
corners2 = ry.dot(corners1.T).T
corners2[:, 0] += w/2 + x + canvas_bev.shape[1] / 2
corners2[:, 1] += l/2 + z
draw_line(canvas_bev, corners2[0], corners2[1], color=color, thickness=thickness)
draw_line(canvas_bev, corners2[1], corners2[2], color=color, thickness=thickness)
draw_line(canvas_bev, corners2[2], corners2[3], color=color, thickness=thickness)
draw_line(canvas_bev, corners2[3], corners2[0], color=color, thickness=thickness)
def draw_line(im, v0, v1, color=(0, 200, 200), thickness=1):
cv2.line(im, (int(v0[0]), int(v0[1])), (int(v1[0]), int(v1[1])), color, thickness)
def create_colorbar(height, width, color_lo=(0,0, 250), color_hi=(0, 250, 250)):
im = np.zeros([height, width, 3])
for h in range(0, height):
color = interp_color(h + 0.5, [0, height], color_hi, color_lo)
im[h, :, 0] = (color[0])
im[h, :, 1] = (color[1])
im[h, :, 2] = (color[2])
return im.astype(np.uint8)
def visualize_from_instances(detections, dataset, dataset_name, min_size_test, output_folder, category_names_official, iteration='',visualize_every=50):
vis_folder = os.path.join(output_folder, 'vis')
util.mkdir_if_missing(vis_folder)
log_str = ''
xy_errors = []
z_errors = []
w3d_errors = []
h3d_errors = []
l3d_errors = []
dim_errors = []
ry_errors = []
n_cats = len(category_names_official)
thres = np.sqrt(1/n_cats)
for imind, im_obj in enumerate(detections):
write_sample = ((imind % visualize_every) == 0)
annos = dataset._dataset[imind]['annotations']
gt_boxes_2d = np.array([anno['bbox'] for anno in annos])
if len(gt_boxes_2d)==0:
continue
gt_boxes_2d[:, 2] += gt_boxes_2d[:, 0]
gt_boxes_2d[:, 3] += gt_boxes_2d[:, 1]
gt_boxes_cat = np.array([anno['category_id'] for anno in annos])
if write_sample:
data_obj = dataset[imind]
assert(data_obj['image_id'] == im_obj['image_id'])
im = util.imread(data_obj['file_name'])
K = np.array(im_obj['K'])
K_inv = np.linalg.inv(K)
sf = im_obj['height'] / min_size_test
for instance in im_obj['instances']:
cat = category_names_official[instance['category_id']]
score = instance['score']
x1, y1, w, h = instance['bbox']
x2 = x1 + w
y2 = y1 + h
alpha, h3d, w3d, l3d, x3d, y3d, z3d, ry3d = (-1,)*8
w3d, h3d, l3d = instance['dimensions']
# unproject
cen_2d = np.array(instance['center_2D'] + [1])
z3d = instance['center_cam'][2]
# get rotation (y-axis only)
ry3d = np.array(instance['pose'])
valid_gt_inds = np.flatnonzero(instance['category_id'] == gt_boxes_cat)
if len(valid_gt_inds) > 0:
quality_matrix = util.iou(np.array([[x1, y1, x2, y2]]), gt_boxes_2d[valid_gt_inds])
nearest_gt = quality_matrix.argmax(axis=1)[0]
nearest_gt_iou = quality_matrix.max(axis=1)[0]
valid_match = nearest_gt_iou >= 0.5
else:
valid_match = False
if valid_match:
gt_x1, gt_y1, gt_w, gt_h = annos[valid_gt_inds[nearest_gt]]['bbox']
gt_x3d, gt_y3d, gt_z3d = annos[valid_gt_inds[nearest_gt]]['center_cam']
gt_w3d, gt_h3d, gt_l3d = annos[valid_gt_inds[nearest_gt]]['dimensions']
gt_cen_2d = K @ np.array([gt_x3d, gt_y3d, gt_z3d])
gt_cen_2d /= gt_cen_2d[2]
gt_pose = annos[valid_gt_inds[nearest_gt]]['pose']
gt_ry3d = np.array(gt_pose)
if valid_match:
# compute errors
xy_errors.append(np.sqrt(((cen_2d[:2] - gt_cen_2d[:2])**2).sum()))
z_errors.append(np.abs(z3d - gt_z3d))
w3d_errors.append(np.abs(w3d - gt_w3d))
h3d_errors.append(np.abs(h3d - gt_h3d))
l3d_errors.append(np.abs(l3d - gt_l3d))
dim_errors.append(np.sqrt((w3d - gt_w3d)**2 + (h3d - gt_h3d)**2 + (l3d - gt_l3d)**2))
try:
ry_errors.append(so3_relative_angle(torch.from_numpy(ry3d).unsqueeze(0), torch.from_numpy(gt_ry3d).unsqueeze(0), cos_bound=1).item())
except:
pass
# unproject point to 3D
x3d, y3d, z3d = (K_inv @ (z3d*cen_2d))
# let us visualize the detections now
if write_sample and score > thres:
color = util.get_color(instance['category_id'])
draw_3d_box(im, K, [x3d, y3d, z3d, w3d, h3d, l3d], ry3d, color=color, thickness=int(np.round(3*im.shape[0]/500)), draw_back=False)
draw_text(im, '{}, z={:.1f}, s={:.2f}'.format(cat, z3d, score), [x1, y1, w, h], scale=0.50*im.shape[0]/500, bg_color=color)
if write_sample:
util.imwrite(im, os.path.join(vis_folder, '{:06d}.jpg'.format(imind)))
# safety in case all rotation matrices failed.
if len(ry_errors) == 0:
ry_errors = [1000, 1000]
log_str += dataset_name + 'iter={}, xy({:.2f}), z({:.2f}), whl({:.2f}, {:.2f}, {:.2f}), ry({:.2f})\n'.format(
iteration,
np.mean(xy_errors), np.mean(z_errors),
np.mean(w3d_errors), np.mean(h3d_errors), np.mean(l3d_errors),
np.mean(ry_errors),
)
return log_str
def imshow(im, fig_num=None):
if fig_num is not None: plt.figure(fig_num)
if len(im.shape) == 2:
im = np.tile(im, [3, 1, 1]).transpose([1, 2, 0])
plt.imshow(cv2.cvtColor(im.astype(np.uint8), cv2.COLOR_RGB2BGR))
plt.show()
def draw_scene_view(im, K, meshes, text=None, scale=1000, R=None, T=None, zoom_factor=1.0, mode='front_and_novel', blend_weight=0.80, blend_weight_overlay=1.0, ground_bounds=None, canvas=None, zplane=0.05, colors=None):
"""
Draws a scene from multiple different modes.
Args:
im (array): the image to draw onto
K (array): the 3x3 matrix for projection to camera to screen
meshes ([Mesh]): a list of meshes to draw into the scene
text ([str]): optional strings to draw per mesh
scale (int): the size of the square novel view canvas (pixels)
R (array): a single 3x3 matrix defining the novel view
T (array): a 3x vector defining the position of the novel view
zoom_factor (float): an optional amount to zoom out (>1) or in (<1)
mode (str): supports ['2D_only', 'front', 'novel', 'front_and_novel'] where
front implies the front-facing camera view and novel is based on R,T
blend_weight (float): blend factor for box edges over the RGB
blend_weight_overlay (float): blends the RGB image with the rendered meshes
ground_bounds (tuple): max_y3d, x3d_start, x3d_end, z3d_start, z3d_end for the Ground floor or
None to let the renderer to estimate the ground bounds in the novel view itself.
canvas (array): if the canvas doesn't change it can be faster to re-use it. Optional.
zplane (float): a plane of depth to solve intersection when
vertex points project behind the camera plane.
"""
if R is None:
R = util.euler2mat([np.pi/3, 0, 0])
if mode == '2D_only':
im_drawn_rgb = deepcopy(im)
# go in order of reverse depth
for mesh_idx in reversed(np.argsort([mesh.verts_padded().cpu().mean(1)[0, 1] for mesh in meshes])):
mesh = meshes[mesh_idx]
verts3D = mesh.verts_padded()[0].numpy()
verts2D = (K @ verts3D.T) / verts3D[:, -1]
color = [min(255, c*255*1.25) for c in mesh.textures.verts_features_padded()[0,0].tolist()]
x1 = verts2D[0, :].min()
y1 = verts2D[1, :].min()
x2 = verts2D[0, :].max()
y2 = verts2D[1, :].max()
draw_2d_box(im_drawn_rgb, [x1, y1, x2-x1, y2-y1], color=color, thickness=max(2, int(np.round(3*im_drawn_rgb.shape[0]/1250))))
if text is not None:
draw_text(im_drawn_rgb, '{}'.format(text[mesh_idx]), [x1, y1], scale=0.50*im_drawn_rgb.shape[0]/500, bg_color=color)
return im_drawn_rgb
else:
meshes_scene = join_meshes_as_scene(meshes)
if torch.cuda.is_available():
meshes_scene = meshes_scene.cuda()
device = meshes_scene.device
meshes_scene.textures = meshes_scene.textures.to(device)
cameras = util.get_camera(K, im.shape[1], im.shape[0]).to(device)
renderer = util.get_basic_renderer(cameras, im.shape[1], im.shape[0], use_color=True).to(device)
if mode in ['front_and_novel', 'front']:
'''
Render full scene from image view
'''
im_drawn_rgb = deepcopy(im)
# save memory if not blending the render
if blend_weight > 0:
rendered_img, _ = renderer(meshes_scene)
sil_mask = rendered_img[0, :, :, 3].cpu().numpy() > 0.1
rendered_img = (rendered_img[0, :, :, :3].cpu().numpy() * 255).astype(np.uint8)
im_drawn_rgb[sil_mask] = rendered_img[sil_mask] * blend_weight + im_drawn_rgb[sil_mask] * (1 - blend_weight)
'''
Draw edges for image view
'''
# go in order of reverse depth
for mesh_idx in reversed(np.argsort([mesh.verts_padded().cpu().mean(1)[0, 1] for mesh in meshes])):
mesh = meshes[mesh_idx]
verts3D = mesh.verts_padded()[0].cpu().numpy()
verts2D = (K @ verts3D.T) / verts3D[:, -1]
if colors is not None:
color = np.minimum(colors[mesh_idx][:-1] * 255 * 1.25, np.ones_like(colors[mesh_idx][:-1])*255).tolist()
else:
color = [min(255, c*255*1.25) for c in mesh.textures.verts_features_padded()[0,0].tolist()]
draw_3d_box_from_verts(
im_drawn_rgb, K, verts3D, color=color,
thickness=max(2, int(np.round(3*im_drawn_rgb.shape[0]/1250))),
draw_back=False, draw_top=False, zplane=zplane
)
x1 = verts2D[0, :].min() #min(verts2D[0, (verts2D[0, :] > 0) & (verts2D[0, :] < im_drawn_rgb.shape[1])])
y1 = verts2D[1, :].min() #min(verts2D[1, (verts2D[1, :] > 0) & (verts2D[1, :] < im_drawn_rgb.shape[0])])
if text is not None:
draw_text(im_drawn_rgb, '{}'.format(text[mesh_idx]), [x1, y1], scale=0.50*im_drawn_rgb.shape[0]/500, bg_color=color)
if blend_weight_overlay < 1.0 and blend_weight_overlay > 0.0:
im_drawn_rgb = im_drawn_rgb * blend_weight_overlay + deepcopy(im) * (1 - blend_weight_overlay)
if mode == 'front':
return im_drawn_rgb
elif mode in ['front_and_novel', 'novel']:
'''
Render from a new view
'''
has_canvas_already = canvas is not None
if not has_canvas_already:
canvas = np.ones((scale, scale, 3))
view_R = torch.from_numpy(R).float().to(device)
if T is None:
center = (meshes_scene.verts_padded().min(1).values + meshes_scene.verts_padded().max(1).values).unsqueeze(0)/2
else:
center = torch.from_numpy(T).float().to(device).view(1, 1, 3)
verts_rotated = meshes_scene.verts_padded().clone()
verts_rotated -= center
verts_rotated = (view_R @ verts_rotated[0].T).T.unsqueeze(0)
K_novelview = deepcopy(K)
K_novelview[0, -1] *= scale / im.shape[1]
K_novelview[1, -1] *= scale / im.shape[0]
cameras = util.get_camera(K_novelview, scale, scale).to(device)
renderer = util.get_basic_renderer(cameras, scale, scale, use_color=True).to(device)
margin = 0.01
if T is None:
max_trials = 10000
zoom_factor = 100.0
zoom_factor_in = zoom_factor
while max_trials:
zoom_factor_in = zoom_factor_in*0.95
verts = verts_rotated.clone()
verts[:, :, -1] += center[:, :, -1]*zoom_factor_in
verts_np = verts.cpu().numpy()
proj = ((K_novelview @ verts_np[0].T) / verts_np[:, :, -1])
# some vertices are extremely close or negative...
# this implies we have zoomed in too much
if (verts[0, :, -1] < 0.25).any():
break
# left or above image
elif (proj[:2, :] < scale*margin).any():
break
# right or below borders
elif (proj[:2, :] > scale*(1 - margin)).any():
break
# everything is in view.
zoom_factor = zoom_factor_in
max_trials -= 1
zoom_out_bias = center[:, :, -1].item()
else:
zoom_out_bias = 1.0
verts_rotated[:, :, -1] += zoom_out_bias*zoom_factor
meshes_novel_view = meshes_scene.clone().update_padded(verts_rotated)
rendered_img, _ = renderer(meshes_novel_view)
im_novel_view = (rendered_img[0, :, :, :3].cpu().numpy() * 255).astype(np.uint8)
sil_mask = rendered_img[0, :, :, 3].cpu().numpy() > 0.1
center_np = center.cpu().numpy()
view_R_np = view_R.cpu().numpy()
if not has_canvas_already:
if ground_bounds is None:
min_x3d, _, min_z3d = meshes_scene.verts_padded().min(1).values[0, :].tolist()
max_x3d, max_y3d, max_z3d = meshes_scene.verts_padded().max(1).values[0, :].tolist()
# go for grid projection, but with extremely bad guess at bounds
x3d_start = np.round(min_x3d - (max_x3d - min_x3d)*50)
x3d_end = np.round(max_x3d + (max_x3d - min_x3d)*50)
z3d_start = np.round(min_z3d - (max_z3d - min_z3d)*50)
z3d_end = np.round(max_z3d + (max_z3d - min_z3d)*50)
grid_xs = np.arange(x3d_start, x3d_end)
grid_zs = np.arange(z3d_start, z3d_end)
xs_mesh, zs_mesh = np.meshgrid(grid_xs, grid_zs)
ys_mesh = np.ones_like(xs_mesh)*max_y3d
point_mesh = np.concatenate((xs_mesh[:, :, np.newaxis], ys_mesh[:, :, np.newaxis], zs_mesh[:, :, np.newaxis]), axis=2)
point_mesh_orig = deepcopy(point_mesh)
mesh_shape = point_mesh.shape
point_mesh = view_R_np @ (point_mesh - center_np).transpose(2, 0, 1).reshape(3, -1)
point_mesh[-1] += zoom_out_bias*zoom_factor
point_mesh[-1, :] = point_mesh[-1, :].clip(0.25)
point_mesh_2D = (K_novelview @ point_mesh) / point_mesh[-1]
point_mesh_2D[-1] = point_mesh[-1]
point_mesh = point_mesh.reshape(3, mesh_shape[0], mesh_shape[1]).transpose(1, 2, 0)
point_mesh_2D = point_mesh_2D.reshape(3, mesh_shape[0], mesh_shape[1]).transpose(1, 2, 0)
maskx = (point_mesh_2D[:, :, 0].T >= -50) & (point_mesh_2D[:, :, 0].T < scale+50) & (point_mesh_2D[:, :, 2].T > 0)
maskz = (point_mesh_2D[:, :, 1].T >= -50) & (point_mesh_2D[:, :, 1].T < scale+50) & (point_mesh_2D[:, :, 2].T > 0)
# invalid scene?
if (not maskz.any()) or (not maskx.any()):
return im, im, canvas
# go for grid projection again!! but with sensible bounds
x3d_start = np.round(point_mesh[:, :, 0].T[maskx].min() - 10)
x3d_end = np.round(point_mesh[:, :, 0].T[maskx].max() + 10)
z3d_start = np.round(point_mesh_orig[:, :, 2].T[maskz].min() - 10)
z3d_end = np.round(point_mesh_orig[:, :, 2].T[maskz].max() + 10)
else:
max_y3d, x3d_start, x3d_end, z3d_start, z3d_end = ground_bounds
grid_xs = np.arange(x3d_start, x3d_end)
grid_zs = np.arange(z3d_start, z3d_end)
xs_mesh, zs_mesh = np.meshgrid(grid_xs, grid_zs)
ys_mesh = np.ones_like(xs_mesh)*max_y3d
point_mesh = np.concatenate((xs_mesh[:, :, np.newaxis], ys_mesh[:, :, np.newaxis], zs_mesh[:, :, np.newaxis]), axis=2)
mesh_shape = point_mesh.shape
point_mesh = view_R_np @ (point_mesh - center_np).transpose(2, 0, 1).reshape(3, -1)
point_mesh[-1] += zoom_out_bias*zoom_factor
point_mesh[-1, :] = point_mesh[-1, :].clip(0.25)
point_mesh_2D = (K_novelview @ point_mesh) / point_mesh[-1]
point_mesh_2D[-1] = point_mesh[-1]
point_mesh = point_mesh.reshape(3, mesh_shape[0], mesh_shape[1]).transpose(1, 2, 0)
point_mesh_2D = point_mesh_2D.reshape(3, mesh_shape[0], mesh_shape[1]).transpose(1, 2, 0)
bg_color = (225,)*3
line_color = (175,)*3
canvas[:, :, 0] = bg_color[0]
canvas[:, :, 1] = bg_color[1]
canvas[:, :, 2] = bg_color[2]
lines_to_draw = set()
for grid_row_idx in range(1, len(grid_zs)):
pre_z = grid_zs[grid_row_idx-1]
cur_z = grid_zs[grid_row_idx]
for grid_col_idx in range(1, len(grid_xs)):
pre_x = grid_xs[grid_col_idx-1]
cur_x = grid_xs[grid_col_idx]
p1 = point_mesh_2D[grid_row_idx-1, grid_col_idx-1]
valid1 = p1[-1] > 0
p2 = point_mesh_2D[grid_row_idx-1, grid_col_idx]
valid2 = p2[-1] > 0
if valid1 and valid2:
line = (tuple(p1[:2].astype(int).tolist()), tuple(p2[:2].astype(int).tolist()))
lines_to_draw.add(line)
# draw vertical line from the previous row
p1 = point_mesh_2D[grid_row_idx-1, grid_col_idx-1]
valid1 = p1[-1] > 0
p2 = point_mesh_2D[grid_row_idx, grid_col_idx-1]
valid2 = p2[-1] > 0
if valid1 and valid2:
line = (tuple(p1[:2].astype(int).tolist()), tuple(p2[:2].astype(int).tolist()))
lines_to_draw.add(line)
for line in lines_to_draw:
draw_line(canvas, line[0], line[1], color=line_color, thickness=max(1, int(np.round(3*scale/1250))))
im_novel_view[~sil_mask] = canvas[~sil_mask]
'''
Draw edges for novel view
'''
# apply novel view to meshes
meshes_novel = []
for mesh in meshes:
mesh_novel = mesh.clone().to(device)
verts_rotated = mesh_novel.verts_padded()
verts_rotated -= center
verts_rotated = (view_R @ verts_rotated[0].T).T.unsqueeze(0)
verts_rotated[:, :, -1] += zoom_out_bias*zoom_factor
mesh_novel = mesh_novel.update_padded(verts_rotated)
meshes_novel.append(mesh_novel)
# go in order of reverse depth
for mesh_idx in reversed(np.argsort([mesh.verts_padded().cpu().mean(1)[0, 1] for mesh in meshes_novel])):
mesh = meshes_novel[mesh_idx]
verts3D = mesh.verts_padded()[0].cpu().numpy()
verts2D = (K_novelview @ verts3D.T) / verts3D[:, -1]
if colors is not None:
color = np.minimum(colors[mesh_idx][:-1] * 255 * 1.25, np.ones_like(colors[mesh_idx][:-1])*255).tolist() # colors[mesh_idx][:-1] * 255 * 1.25
else:
color = [min(255, c*255*1.25) for c in mesh.textures.verts_features_padded()[0,0].tolist()]
draw_3d_box_from_verts(
im_novel_view, K_novelview, verts3D, color=color,
thickness=max(2, int(np.round(3*im_novel_view.shape[0]/1250))),
draw_back=False, draw_top=False, zplane=zplane
)
x1 = verts2D[0, :].min()
y1 = verts2D[1, :].min()
if text is not None:
draw_text(im_novel_view, '{}'.format(text[mesh_idx]), [x1, y1], scale=0.50*im_novel_view.shape[0]/500, bg_color=color)
if mode == 'front_and_novel':
return im_drawn_rgb, im_novel_view, canvas
else:
return im_novel_view, canvas
else:
raise ValueError('No visualization written for {}'.format(mode))
def get_polygon_grid(im, poly_verts):
nx = im.shape[1]
ny = im.shape[0]
x, y = np.meshgrid(np.arange(nx), np.arange(ny))
x, y = x.flatten(), y.flatten()
points = np.vstack((x, y)).T
path = Path(poly_verts)
grid = path.contains_points(points)
grid = grid.reshape((ny, nx))
return grid
def draw_circle(im, pos, radius=5, thickness=1, color=(250, 100, 100), fill=True):
if fill: thickness = -1
cv2.circle(im, (int(pos[0]), int(pos[1])), radius, color=color, thickness=thickness)
def draw_transparent_polygon(im, verts, blend=0.5, color=(0, 255, 255)):
mask = get_polygon_grid(im, verts[:4, :])
im[mask, 0] = im[mask, 0] * blend + (1 - blend) * color[0]
im[mask, 1] = im[mask, 1] * blend + (1 - blend) * color[1]
im[mask, 2] = im[mask, 2] * blend + (1 - blend) * color[2]
def draw_3d_box_from_verts(im, K, verts3d, color=(0, 200, 200), thickness=1, draw_back=False, draw_top=False, zplane=0.05, eps=1e-4):
"""
Draws a scene from multiple different modes.
Args:
im (array): the image to draw onto
K (array): the 3x3 matrix for projection to camera to screen
verts3d (array): the 8x3 matrix of vertices in camera space
color (tuple): color in RGB scaled [0, 255)
thickness (float): the line thickness for opencv lines
draw_back (bool): whether a backface should be highlighted
draw_top (bool): whether the top face should be highlighted
zplane (float): a plane of depth to solve intersection when
vertex points project behind the camera plane.
"""
if isinstance(K, torch.Tensor):
K = K.detach().cpu().numpy()
if isinstance(verts3d, torch.Tensor):
verts3d = verts3d.detach().cpu().numpy()
# reorder
bb3d_lines_verts = [[0, 1], [1, 2], [2, 3], [3, 0], [1, 5], [5, 6], [6, 2], [4, 5], [4, 7], [6, 7], [0, 4], [3, 7]]
# define back and top vetice planes
back_idxs = [4, 0, 3, 7]
top_idxs = [4, 0, 1, 5]
for (i, j) in bb3d_lines_verts:
v0 = verts3d[i]
v1 = verts3d[j]
z0, z1 = v0[-1], v1[-1]
if (z0 >= zplane or z1 >= zplane):
# computer intersection of v0, v1 and zplane
s = (zplane - z0) / max((z1 - z0), eps)
new_v = v0 + s * (v1 - v0)
if (z0 < zplane) and (z1 >= zplane):
# i0 vertex is behind the plane
v0 = new_v
elif (z0 >= zplane) and (z1 < zplane):
# i1 vertex is behind the plane
v1 = new_v
v0_proj = (K @ v0)/max(v0[-1], eps)
v1_proj = (K @ v1)/max(v1[-1], eps)
# project vertices
cv2.line(im,
(int(v0_proj[0]), int(v0_proj[1])),
(int(v1_proj[0]), int(v1_proj[1])),
color, thickness
)
# dont draw the planes if a vertex is out of bounds
draw_back &= np.all(verts3d[back_idxs, -1] >= zplane)
draw_top &= np.all(verts3d[top_idxs, -1] >= zplane)
if draw_back or draw_top:
# project to image
verts2d = (K @ verts3d.T).T
verts2d /= verts2d[:, -1][:, np.newaxis]
if type(verts2d) == torch.Tensor:
verts2d = verts2d.detach().cpu().numpy()
if draw_back:
draw_transparent_polygon(im, verts2d[back_idxs, :2], blend=0.5, color=color)
if draw_top:
draw_transparent_polygon(im, verts2d[top_idxs, :2], blend=0.5, color=color)
def draw_3d_box(im, K, box3d, R, color=(0, 200, 200), thickness=1, draw_back=False, draw_top=False, view_R=None, view_T=None):
verts2d, verts3d = util.get_cuboid_verts(K, box3d, R, view_R=view_R, view_T=view_T)
draw_3d_box_from_verts(im, K, verts3d, color=color, thickness=thickness, draw_back=draw_back, draw_top=draw_top)
def draw_text(im, text, pos, scale=0.4, color='auto', font=cv2.FONT_HERSHEY_SIMPLEX, bg_color=(0, 255, 255),
blend=0.33, lineType=1):
text = str(text)
pos = [int(pos[0]), int(pos[1])]
if color == 'auto':
if bg_color is not None:
color = (0, 0, 0) if ((bg_color[0] + bg_color[1] + bg_color[2])/3) > 127.5 else (255, 255, 255)
else:
color = (0, 0, 0)
if bg_color is not None:
text_size, _ = cv2.getTextSize(text, font, scale, lineType)
x_s = int(np.clip(pos[0], a_min=0, a_max=im.shape[1]))
x_e = int(np.clip(x_s + text_size[0] - 1 + 4, a_min=0, a_max=im.shape[1]))
y_s = int(np.clip(pos[1] - text_size[1] - 2, a_min=0, a_max=im.shape[0]))
y_e = int(np.clip(pos[1] + 1 - 2, a_min=0, a_max=im.shape[0]))
im[y_s:y_e + 1, x_s:x_e + 1, 0] = im[y_s:y_e + 1, x_s:x_e + 1, 0]*blend + bg_color[0] * (1 - blend)
im[y_s:y_e + 1, x_s:x_e + 1, 1] = im[y_s:y_e + 1, x_s:x_e + 1, 1]*blend + bg_color[1] * (1 - blend)
im[y_s:y_e + 1, x_s:x_e + 1, 2] = im[y_s:y_e + 1, x_s:x_e + 1, 2]*blend + bg_color[2] * (1 - blend)
pos[0] = int(np.clip(pos[0] + 2, a_min=0, a_max=im.shape[1]))
pos[1] = int(np.clip(pos[1] - 2, a_min=0, a_max=im.shape[0]))
cv2.putText(im, text, tuple(pos), font, scale, color, lineType)
def draw_transparent_square(im, pos, alpha=1, radius=5, color=(250, 100, 100)):
l = pos[1] - radius
r = pos[1] + radius
t = pos[0] - radius
b = pos[0] + radius
if (np.array([l, r, t, b]) >= 0).any():
l = np.clip(np.floor(l), 0, im.shape[0]).astype(int)
r = np.clip(np.floor(r), 0, im.shape[0]).astype(int)
t = np.clip(np.floor(t), 0, im.shape[1]).astype(int)
b = np.clip(np.floor(b), 0, im.shape[1]).astype(int)
# blend
im[l:r + 1, t:b + 1, 0] = im[l:r + 1, t:b + 1, 0] * alpha + color[0] * (1 - alpha)
im[l:r + 1, t:b + 1, 1] = im[l:r + 1, t:b + 1, 1] * alpha + color[1] * (1 - alpha)
im[l:r + 1, t:b + 1, 2] = im[l:r + 1, t:b + 1, 2] * alpha + color[2] * (1 - alpha)
def draw_2d_box(im, box, color=(0, 200, 200), thickness=1):
x = box[0]
y = box[1]
w = box[2]
h = box[3]
x2 = (x + w) - 1
y2 = (y + h) - 1
cv2.rectangle(im, (int(x), int(y)), (int(x2), int(y2)), color, thickness)
def imhstack(im1, im2):
sf = im1.shape[0] / im2.shape[0]
if sf > 1:
im2 = cv2.resize(im2, (int(im2.shape[1] / sf), im1.shape[0]))
elif sf < 1:
im1 = cv2.resize(im1, (int(im1.shape[1] / sf), im2.shape[0]))
im_concat = np.hstack((im1, im2))
return im_concat
def imvstack(im1, im2):
sf = im1.shape[1] / im2.shape[1]
if sf > 1:
im2 = cv2.resize(im2, (int(im2.shape[0] / sf), im1.shape[1]))
elif sf < 1:
im1 = cv2.resize(im1, (int(im1.shape[0] / sf), im2.shape[1]))
im_concat = np.vstack((im1, im2))
return im_concat |