Spaces:
Runtime error
Runtime error
import mmcv | |
import numpy as np | |
from mmcv.utils import deprecated_api_warning, is_tuple_of | |
from numpy import random | |
from mmseg.datasets.builder import PIPELINES | |
from IPython import embed | |
class AlignResize(object): | |
"""Resize images & seg. Align | |
""" | |
def __init__(self, | |
img_scale=None, | |
multiscale_mode='range', | |
ratio_range=None, | |
keep_ratio=True, | |
size_divisor=32): | |
if img_scale is None: | |
self.img_scale = None | |
else: | |
if isinstance(img_scale, list): | |
self.img_scale = img_scale | |
else: | |
self.img_scale = [img_scale] | |
assert mmcv.is_list_of(self.img_scale, tuple) | |
if ratio_range is not None: | |
# mode 1: given img_scale=None and a range of image ratio | |
# mode 2: given a scale and a range of image ratio | |
assert self.img_scale is None or len(self.img_scale) == 1 | |
else: | |
# mode 3 and 4: given multiple scales or a range of scales | |
assert multiscale_mode in ['value', 'range'] | |
self.multiscale_mode = multiscale_mode | |
self.ratio_range = ratio_range | |
self.keep_ratio = keep_ratio | |
self.size_divisor = size_divisor | |
def random_select(img_scales): | |
"""Randomly select an img_scale from given candidates. | |
Args: | |
img_scales (list[tuple]): Images scales for selection. | |
Returns: | |
(tuple, int): Returns a tuple ``(img_scale, scale_dix)``, | |
where ``img_scale`` is the selected image scale and | |
``scale_idx`` is the selected index in the given candidates. | |
""" | |
assert mmcv.is_list_of(img_scales, tuple) | |
scale_idx = np.random.randint(len(img_scales)) | |
img_scale = img_scales[scale_idx] | |
return img_scale, scale_idx | |
def random_sample(img_scales): | |
"""Randomly sample an img_scale when ``multiscale_mode=='range'``. | |
Args: | |
img_scales (list[tuple]): Images scale range for sampling. | |
There must be two tuples in img_scales, which specify the lower | |
and uper bound of image scales. | |
Returns: | |
(tuple, None): Returns a tuple ``(img_scale, None)``, where | |
``img_scale`` is sampled scale and None is just a placeholder | |
to be consistent with :func:`random_select`. | |
""" | |
assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 | |
img_scale_long = [max(s) for s in img_scales] | |
img_scale_short = [min(s) for s in img_scales] | |
long_edge = np.random.randint( | |
min(img_scale_long), | |
max(img_scale_long) + 1) | |
short_edge = np.random.randint( | |
min(img_scale_short), | |
max(img_scale_short) + 1) | |
img_scale = (long_edge, short_edge) | |
return img_scale, None | |
def random_sample_ratio(img_scale, ratio_range): | |
"""Randomly sample an img_scale when ``ratio_range`` is specified. | |
A ratio will be randomly sampled from the range specified by | |
``ratio_range``. Then it would be multiplied with ``img_scale`` to | |
generate sampled scale. | |
Args: | |
img_scale (tuple): Images scale base to multiply with ratio. | |
ratio_range (tuple[float]): The minimum and maximum ratio to scale | |
the ``img_scale``. | |
Returns: | |
(tuple, None): Returns a tuple ``(scale, None)``, where | |
``scale`` is sampled ratio multiplied with ``img_scale`` and | |
None is just a placeholder to be consistent with | |
:func:`random_select`. | |
""" | |
assert isinstance(img_scale, tuple) and len(img_scale) == 2 | |
min_ratio, max_ratio = ratio_range | |
assert min_ratio <= max_ratio | |
ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio | |
scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) | |
return scale, None | |
def _random_scale(self, results): | |
"""Randomly sample an img_scale according to ``ratio_range`` and | |
``multiscale_mode``. | |
If ``ratio_range`` is specified, a ratio will be sampled and be | |
multiplied with ``img_scale``. | |
If multiple scales are specified by ``img_scale``, a scale will be | |
sampled according to ``multiscale_mode``. | |
Otherwise, single scale will be used. | |
Args: | |
results (dict): Result dict from :obj:`dataset`. | |
Returns: | |
dict: Two new keys 'scale` and 'scale_idx` are added into | |
``results``, which would be used by subsequent pipelines. | |
""" | |
if self.ratio_range is not None: | |
if self.img_scale is None: | |
h, w = results['img'].shape[:2] | |
scale, scale_idx = self.random_sample_ratio((w, h), | |
self.ratio_range) | |
else: | |
scale, scale_idx = self.random_sample_ratio( | |
self.img_scale[0], self.ratio_range) | |
elif len(self.img_scale) == 1: | |
scale, scale_idx = self.img_scale[0], 0 | |
elif self.multiscale_mode == 'range': | |
scale, scale_idx = self.random_sample(self.img_scale) | |
elif self.multiscale_mode == 'value': | |
scale, scale_idx = self.random_select(self.img_scale) | |
else: | |
raise NotImplementedError | |
results['scale'] = scale | |
results['scale_idx'] = scale_idx | |
def _align(self, img, size_divisor, interpolation=None): | |
align_h = int(np.ceil(img.shape[0] / size_divisor)) * size_divisor | |
align_w = int(np.ceil(img.shape[1] / size_divisor)) * size_divisor | |
if interpolation == None: | |
img = mmcv.imresize(img, (align_w, align_h)) | |
else: | |
img = mmcv.imresize(img, (align_w, align_h), interpolation=interpolation) | |
return img | |
def _resize_img(self, results): | |
"""Resize images with ``results['scale']``.""" | |
if self.keep_ratio: | |
img, scale_factor = mmcv.imrescale( | |
results['img'], results['scale'], return_scale=True) | |
#### align #### | |
img = self._align(img, self.size_divisor) | |
# the w_scale and h_scale has minor difference | |
# a real fix should be done in the mmcv.imrescale in the future | |
new_h, new_w = img.shape[:2] | |
h, w = results['img'].shape[:2] | |
w_scale = new_w / w | |
h_scale = new_h / h | |
else: | |
img, w_scale, h_scale = mmcv.imresize( | |
results['img'], results['scale'], return_scale=True) | |
h, w = img.shape[:2] | |
assert int(np.ceil(h / self.size_divisor)) * self.size_divisor == h and \ | |
int(np.ceil(w / self.size_divisor)) * self.size_divisor == w, \ | |
"img size not align. h:{} w:{}".format(h,w) | |
scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], | |
dtype=np.float32) | |
results['img'] = img | |
results['img_shape'] = img.shape | |
results['pad_shape'] = img.shape # in case that there is no padding | |
results['scale_factor'] = scale_factor | |
results['keep_ratio'] = self.keep_ratio | |
def _resize_seg(self, results): | |
"""Resize semantic segmentation map with ``results['scale']``.""" | |
for key in results.get('seg_fields', []): | |
if self.keep_ratio: | |
gt_seg = mmcv.imrescale( | |
results[key], results['scale'], interpolation='nearest') | |
gt_seg = self._align(gt_seg, self.size_divisor, interpolation='nearest') | |
else: | |
gt_seg = mmcv.imresize( | |
results[key], results['scale'], interpolation='nearest') | |
h, w = gt_seg.shape[:2] | |
assert int(np.ceil(h / self.size_divisor)) * self.size_divisor == h and \ | |
int(np.ceil(w / self.size_divisor)) * self.size_divisor == w, \ | |
"gt_seg size not align. h:{} w:{}".format(h, w) | |
results[key] = gt_seg | |
def __call__(self, results): | |
"""Call function to resize images, bounding boxes, masks, semantic | |
segmentation map. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', | |
'keep_ratio' keys are added into result dict. | |
""" | |
if 'scale' not in results: | |
self._random_scale(results) | |
self._resize_img(results) | |
self._resize_seg(results) | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += (f'(img_scale={self.img_scale}, ' | |
f'multiscale_mode={self.multiscale_mode}, ' | |
f'ratio_range={self.ratio_range}, ' | |
f'keep_ratio={self.keep_ratio})') | |
return repr_str |