Spaces:
Runtime error
Runtime error
import argparse | |
import os | |
import mmcv | |
import torch | |
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel | |
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint, | |
wrap_fp16_model) | |
from mmcv.utils import DictAction | |
from mmseg.apis import multi_gpu_test, single_gpu_test | |
from mmseg.datasets import build_dataloader, build_dataset | |
from mmseg.models import build_segmentor | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='mmseg test (and eval) a model') | |
parser.add_argument('config', help='test config file path') | |
parser.add_argument('checkpoint', help='checkpoint file') | |
parser.add_argument( | |
'--aug-test', action='store_true', help='Use Flip and Multi scale aug') | |
parser.add_argument('--out', help='output result file in pickle format') | |
parser.add_argument( | |
'--format-only', | |
action='store_true', | |
help='Format the output results without perform evaluation. It is' | |
'useful when you want to format the result to a specific format and ' | |
'submit it to the test server') | |
parser.add_argument( | |
'--eval', | |
type=str, | |
nargs='+', | |
help='evaluation metrics, which depends on the dataset, e.g., "mIoU"' | |
' for generic datasets, and "cityscapes" for Cityscapes') | |
parser.add_argument('--show', action='store_true', help='show results') | |
parser.add_argument( | |
'--show-dir', help='directory where painted images will be saved') | |
parser.add_argument( | |
'--gpu-collect', | |
action='store_true', | |
help='whether to use gpu to collect results.') | |
parser.add_argument( | |
'--tmpdir', | |
help='tmp directory used for collecting results from multiple ' | |
'workers, available when gpu_collect is not specified') | |
parser.add_argument( | |
'--options', nargs='+', action=DictAction, help='custom options') | |
parser.add_argument( | |
'--eval-options', | |
nargs='+', | |
action=DictAction, | |
help='custom options for evaluation') | |
parser.add_argument( | |
'--launcher', | |
choices=['none', 'pytorch', 'slurm', 'mpi'], | |
default='none', | |
help='job launcher') | |
parser.add_argument( | |
'--opacity', | |
type=float, | |
default=0.5, | |
help='Opacity of painted segmentation map. In (0, 1] range.') | |
parser.add_argument('--local_rank', type=int, default=0) | |
args = parser.parse_args() | |
if 'LOCAL_RANK' not in os.environ: | |
os.environ['LOCAL_RANK'] = str(args.local_rank) | |
return args | |
def main(): | |
args = parse_args() | |
assert args.out or args.eval or args.format_only or args.show \ | |
or args.show_dir, \ | |
('Please specify at least one operation (save/eval/format/show the ' | |
'results / save the results) with the argument "--out", "--eval"' | |
', "--format-only", "--show" or "--show-dir"') | |
if args.eval and args.format_only: | |
raise ValueError('--eval and --format_only cannot be both specified') | |
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): | |
raise ValueError('The output file must be a pkl file.') | |
cfg = mmcv.Config.fromfile(args.config) | |
if args.options is not None: | |
cfg.merge_from_dict(args.options) | |
# set cudnn_benchmark | |
if cfg.get('cudnn_benchmark', False): | |
torch.backends.cudnn.benchmark = True | |
if args.aug_test: | |
# hard code index | |
cfg.data.test.pipeline[1].img_ratios = [ | |
0.5, 0.75, 1.0, 1.25, 1.5, 1.75 | |
] | |
cfg.data.test.pipeline[1].flip = True | |
cfg.model.pretrained = None | |
cfg.data.test.test_mode = True | |
# init distributed env first, since logger depends on the dist info. | |
if args.launcher == 'none': | |
distributed = False | |
else: | |
distributed = True | |
init_dist(args.launcher, **cfg.dist_params) | |
# build the dataloader | |
# TODO: support multiple images per gpu (only minor changes are needed) | |
dataset = build_dataset(cfg.data.test) | |
data_loader = build_dataloader( | |
dataset, | |
samples_per_gpu=1, | |
workers_per_gpu=cfg.data.workers_per_gpu, | |
dist=distributed, | |
shuffle=False) | |
# build the model and load checkpoint | |
cfg.model.train_cfg = None | |
model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg')) | |
fp16_cfg = cfg.get('fp16', None) | |
if fp16_cfg is not None: | |
wrap_fp16_model(model) | |
checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') | |
model.CLASSES = checkpoint['meta']['CLASSES'] | |
model.PALETTE = checkpoint['meta']['PALETTE'] | |
efficient_test = False | |
if args.eval_options is not None: | |
efficient_test = args.eval_options.get('efficient_test', False) | |
if not distributed: | |
model = MMDataParallel(model, device_ids=[0]) | |
outputs = single_gpu_test(model, data_loader, args.show, args.show_dir, | |
efficient_test, args.opacity) | |
else: | |
model = MMDistributedDataParallel( | |
model.cuda(), | |
device_ids=[torch.cuda.current_device()], | |
broadcast_buffers=False) | |
outputs = multi_gpu_test(model, data_loader, args.tmpdir, | |
args.gpu_collect, efficient_test) | |
rank, _ = get_dist_info() | |
if rank == 0: | |
if args.out: | |
print(f'\nwriting results to {args.out}') | |
mmcv.dump(outputs, args.out) | |
kwargs = {} if args.eval_options is None else args.eval_options | |
if args.format_only: | |
dataset.format_results(outputs, **kwargs) | |
if args.eval: | |
dataset.evaluate(outputs, args.eval, **kwargs) | |
if __name__ == '__main__': | |
main() | |