Spaces:
Sleeping
Sleeping
File size: 10,751 Bytes
974f253 3cc9efa 974f253 3cc9efa 974f253 3cc9efa 974f253 3cc9efa 974f253 77d2366 73b392d 3cc9efa 73b392d 3cc9efa 203aa9d 3cc9efa 203aa9d 3cc9efa 203aa9d 3cc9efa 203aa9d 3cc9efa 203aa9d 3cc9efa 203aa9d 3cc9efa 203aa9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import pydantic
module_file_path = pydantic.__file__
module_file_path = module_file_path.split('pydantic')[0] + 'haystack'
import os
import fileinput
def replace_string_in_files(folder_path, old_str, new_str):
for subdir, dirs, files in os.walk(folder_path):
for file in files:
file_path = os.path.join(subdir, file)
# Check if the file is a text file (you can modify this condition based on your needs)
if file.endswith(".txt") or file.endswith(".py"):
# Open the file in place for editing
with fileinput.FileInput(file_path, inplace=True) as f:
for line in f:
# Replace the old string with the new string
print(line.replace(old_str, new_str), end='')
with open(module_file_path+'/schema.py','r') as f:
haystack_schema_file = f.read()
if 'from pydantic.v1' not in haystack_schema_file:
replace_string_in_files(module_file_path, 'from pydantic', 'from pydantic.v1')
from operator import index
import streamlit as st
import logging
import os
from annotated_text import annotation
from json import JSONDecodeError
from markdown import markdown
from utils.config import parser
from utils.haystack import start_document_store, query, initialize_pipeline, start_preprocessor_node, start_retriever, start_reader
from utils.ui import reset_results, set_initial_state
import pandas as pd
import haystack
# Whether the file upload should be enabled or not
DISABLE_FILE_UPLOAD = bool(os.getenv("DISABLE_FILE_UPLOAD"))
# Define a function to handle file uploads
def upload_files():
uploaded_files = upload_container.file_uploader(
"upload", type=["pdf", "txt", "docx"], accept_multiple_files=True, label_visibility="collapsed"
)
return uploaded_files
# Define a function to process a single file
def process_file(data_file, preprocesor, document_store):
# read file and add content
file_contents = data_file.read().decode("utf-8")
docs = [{
'content': str(file_contents),
'meta': {'name': str(data_file.name)}
}]
try:
names = [item.meta.get('name') for item in document_store.get_all_documents()]
#if args.store == 'inmemory':
# doc = converter.convert(file_path=files, meta=None)
if data_file.name in names:
print(f"{data_file.name} already processed")
else:
print(f'preprocessing uploaded doc {data_file.name}.......')
#print(data_file.read().decode("utf-8"))
preprocessed_docs = preprocesor.process(docs)
print('writing to document store.......')
document_store.write_documents(preprocessed_docs)
print('updating emebdding.......')
document_store.update_embeddings(retriever)
except Exception as e:
print(e)
def reset_documents():
print('Reseting documents list')
document_store.delete_documents()
def upload_document():
upload_status = 0
if data_files is not None:
for data_file in data_files:
# Upload file
if data_file:
try:
#raw_json = upload_doc(data_file)
# Call the process_file function for each uploaded file
if args.store == 'inmemory':
processed_data = process_file(data_file, preprocesor, document_store)
upload_container.write(str(data_file.name) + " β
")
except Exception as e:
upload_container.write(str(data_file.name) + " β ")
upload_container.write("_This file could not be parsed, see the logs for more information._")
try:
args = parser.parse_args()
preprocesor = start_preprocessor_node()
document_store = start_document_store(type=args.store)
retriever = start_retriever(document_store)
reader = start_reader()
st.set_page_config(
page_title="MLReplySearch",
layout="centered",
page_icon=":shark:",
menu_items={
'Get Help': 'https://www.extremelycoolapp.com/help',
'Report a bug': "https://www.extremelycoolapp.com/bug",
'About': "# This is a header. This is an *extremely* cool app!"
}
)
st.sidebar.image("ml_logo.png", use_column_width=True)
# Sidebar for Task Selection
st.sidebar.header('Options:')
# OpenAI Key Input
openai_key = st.sidebar.text_input("Enter OpenAI Key:", type="password")
if openai_key:
task_options = ['Extractive', 'Generative']
else:
task_options = ['Extractive']
task_selection = st.sidebar.radio('Select the task:', task_options)
# Check the task and initialize pipeline accordingly
if task_selection == 'Extractive':
pipeline_extractive = initialize_pipeline("extractive", document_store, retriever, reader)
elif task_selection == 'Generative' and openai_key: # Check for openai_key to ensure user has entered it
pipeline_rag = initialize_pipeline("rag", document_store, retriever, reader, openai_key=openai_key)
set_initial_state()
st.write('# ' + args.name)
# File upload block
if not DISABLE_FILE_UPLOAD:
upload_container = st.sidebar.container()
upload_container.write("## File Upload:")
#data_files = st.sidebar.file_uploader(
# "upload", type=["pdf", "txt", "docx"], accept_multiple_files=True, label_visibility="hidden"
#)
data_files = upload_files()
upload_container.button('Upload Files', on_click=upload_document, args=())
st.sidebar.button("Reset documents", on_click=reset_documents, args=())
if "question" not in st.session_state:
st.session_state.question = ""
# Search bar
question = st.text_input("", value=st.session_state.question, max_chars=100, on_change=reset_results)
run_pressed = st.button("Run")
run_query = (
run_pressed or question != st.session_state.question #or task_selection != st.session_state.task
)
# Get results for query
if run_query and question:
if task_selection == 'Extractive':
reset_results()
st.session_state.question = question
with st.spinner("π Running your pipeline"):
try:
st.session_state.results_extractive = query(pipeline_extractive, question)
st.session_state.task = task_selection
except JSONDecodeError as je:
st.error(
"π An error occurred reading the results. Is the document store working?"
)
except Exception as e:
logging.exception(e)
st.error("π An error occurred during the request.")
elif task_selection == 'Generative':
reset_results()
st.session_state.question = question
with st.spinner("π Running your pipeline"):
try:
st.session_state.results_generative = query(pipeline_rag, question)
st.session_state.task = task_selection
except JSONDecodeError as je:
st.error(
"π An error occurred reading the results. Is the document store working?"
)
except Exception as e:
if "API key is invalid" in str(e):
logging.exception(e)
st.error("π incorrect API key provided. You can find your API key at https://platform.openai.com/account/api-keys.")
else:
logging.exception(e)
st.error("π An error occurred during the request.")
# Display results
if (st.session_state.results_extractive or st.session_state.results_generative) and run_query:
# Handle Extractive Answers
if task_selection == 'Extractive':
results = st.session_state.results_extractive
st.subheader("Extracted Answers:")
if 'answers' in results:
answers = results['answers']
treshold = 0.2
higher_then_treshold = any(ans.score > treshold for ans in answers)
if not higher_then_treshold:
st.markdown(f"<span style='color:red'>Please note none of the answers achieved a score higher then {int(treshold) * 100}%. Which probably means that the desired answer is not in the searched documents.</span>", unsafe_allow_html=True)
for count, answer in enumerate(answers):
if answer.answer:
text, context = answer.answer, answer.context
start_idx = context.find(text)
end_idx = start_idx + len(text)
score = round(answer.score, 3)
st.markdown(f"**Answer {count + 1}:**")
st.markdown(
context[:start_idx] + str(annotation(body=text, label=f'SCORE {score}', background='#964448', color='#ffffff')) + context[end_idx:],
unsafe_allow_html=True,
)
else:
st.info(
"π€ Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!"
)
# Handle Generative Answers
elif task_selection == 'Generative':
results = st.session_state.results_generative
st.subheader("Generated Answer:")
if 'results' in results:
st.markdown("**Answer:**")
st.write(results['results'][0])
# Handle Retrieved Documents
if 'documents' in results:
retrieved_documents = results['documents']
st.subheader("Retriever Results:")
data = []
for i, document in enumerate(retrieved_documents):
# Truncate the content
truncated_content = (document.content[:150] + '...') if len(document.content) > 150 else document.content
data.append([i + 1, document.meta['name'], truncated_content])
# Convert data to DataFrame and display using Streamlit
df = pd.DataFrame(data, columns=['Ranked Context', 'Document Name', 'Content'])
st.table(df)
except SystemExit as e:
os._exit(e.code) |