AnkitAI commited on
Commit
e03c695
·
verified ·
1 Parent(s): e4fff4a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -1
app.py CHANGED
@@ -1,3 +1,35 @@
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- gr.load("models/AnkitAI/reviews-roberta-base-sentiment-analysis").launch()
 
 
1
+ # import gradio as gr
2
+
3
+ # gr.load("models/AnkitAI/reviews-roberta-base-sentiment-analysis").launch()
4
+
5
  import gradio as gr
6
+ from transformers import RobertaTokenizer, RobertaForSequenceClassification
7
+ import torch
8
+
9
+ # Load the model and tokenizer
10
+ model_name = "AnkitAI/reviews-roberta-base-sentiment-analysis"
11
+ model = RobertaForSequenceClassification.from_pretrained(model_name)
12
+ tokenizer = RobertaTokenizer.from_pretrained(model_name)
13
+
14
+ # Define a function to perform sentiment analysis and map labels
15
+ def predict_sentiment(text):
16
+ inputs = tokenizer(text, return_tensors="pt")
17
+ outputs = model(**inputs)
18
+ logits = outputs.logits
19
+ predicted_class_id = torch.argmax(logits, dim=1).item()
20
+
21
+ # Map class id to label
22
+ labels = ["Negative", "Positive"]
23
+ return labels[predicted_class_id]
24
+
25
+ # Create a Gradio interface
26
+ interface = gr.Interface(
27
+ fn=predict_sentiment,
28
+ inputs=gr.inputs.Textbox(lines=2, placeholder="Enter a review here..."),
29
+ outputs="text",
30
+ title="Reviews Sentiment Analysis",
31
+ description="Enter an Amazon review to see if it is positive or negative."
32
+ )
33
 
34
+ # Launch the interface
35
+ interface.launch()