Ankitajadhav commited on
Commit
ab5f91a
·
verified ·
1 Parent(s): 6dd0b95

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -0
app.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import packages
2
+ import gradio as gr
3
+ import copy
4
+ from llama_cpp import Llama
5
+ from huggingface_hub import hf_hub_download
6
+ import chromadb
7
+ from chromadb.utils.embedding_functions import OpenCLIPEmbeddingFunction
8
+ from chromadb.utils.data_loaders import ImageLoader
9
+ from chromadb.config import Settings
10
+ from datasets import load_dataset
11
+ import numpy as np
12
+ from tqdm import tqdm
13
+ import shutil
14
+ import os
15
+ from chromadb.utils import embedding_functions
16
+ import gradio as gr
17
+ from PIL import Image
18
+ import requests
19
+ from io import BytesIO
20
+ from transformers import pipeline
21
+ from bark import SAMPLE_RATE, generate_audio, preload_models
22
+
23
+ # Initialize the Llama model
24
+ llm = Llama(
25
+ ## original model
26
+ # model_path=hf_hub_download(
27
+ # repo_id="microsoft/Phi-3-mini-4k-instruct-gguf",
28
+ # filename="Phi-3-mini-4k-instruct-q4.gguf",
29
+ # ),
30
+ ## compressed model
31
+ model_path=hf_hub_download(
32
+ repo_id="TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF",
33
+ filename="capybarahermes-2.5-mistral-7b.Q2_K.gguf",
34
+ ),
35
+ n_ctx=2048,
36
+ n_gpu_layers=50, # Adjust based on your VRAM
37
+ )
38
+
39
+ # use of clip model for embedding
40
+ client = chromadb.PersistentClient(path="DB")
41
+
42
+ embedding_function = OpenCLIPEmbeddingFunction()
43
+ image_loader = ImageLoader() # must be if you reads from URIs
44
+
45
+ # initialize separate collection for image and text data
46
+ collection_images = client.create_collection(
47
+ name='collection_images',
48
+ embedding_function=embedding_function,
49
+ data_loader=image_loader)
50
+
51
+ collection_text = client.create_collection(
52
+ name='collection_text',
53
+ embedding_function=embedding_function,
54
+ )
55
+
56
+ # Get the uris to the images
57
+ IMAGE_FOLDER = 'Moin_Von_Bremen/images'
58
+
59
+
60
+ image_uris = sorted([os.path.join(IMAGE_FOLDER, image_name) for image_name in os.listdir(IMAGE_FOLDER) if not image_name.endswith('.txt')])
61
+ ids = [str(i) for i in range(len(image_uris))]
62
+
63
+ collection_images.add(ids=ids, uris=image_uris)