Whats_Cooking / app.py
Ankitajadhav's picture
Update app.py
8324d73 verified
raw
history blame
5.08 kB
import shutil
import os
__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
from sentence_transformers import SentenceTransformer
import chromadb
from datasets import load_dataset
import gradio as gr
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments
model_name = "Amitesh007/text_generation-finetuned-gpt2"
# Load the tokenizer
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
# Load the model with from_tf=True
model = GPT2LMHeadModel.from_pretrained(model_name, from_tf=True)
# Function to clear the cache
def clear_cache(model_name):
cache_dir = os.path.expanduser(f'~/.cache/torch/sentence_transformers/{model_name.replace("/", "_")}')
if os.path.exists(cache_dir):
shutil.rmtree(cache_dir)
print(f"Cleared cache directory: {cache_dir}")
else:
print(f"No cache directory found for: {cache_dir}")
# Embedding vector
class VectorStore:
def __init__(self, collection_name):
# Initialize the embedding model
try:
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
except Exception as e:
print(f"Error loading model: {e}")
raise
self.chroma_client = chromadb.Client()
self.collection = self.chroma_client.create_collection(name=collection_name)
# Method to populate the vector store with embeddings from a dataset
def populate_vectors(self, dataset, batch_size=100):
# Use dataset streaming
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full', split='train[:1500]', streaming=True)
texts = []
i = 0 # Initialize index
for example in dataset:
title = example['title_cleaned']
recipe = example['recipe_new']
meal_type = example['meal_type']
allergy = example['allergy_type']
ingredients_alternative = example['ingredients_alternatives']
# Concatenate the text from the columns
text = f"{title} {recipe} {meal_type} {allergy} {ingredients_alternative}"
texts.append(text)
# Process the batch
if (i + 1) % batch_size == 0:
self._process_batch(texts, i)
texts = []
i += 1 # Increment index
# Process the remaining texts
if texts:
self._process_batch(texts, i)
def _process_batch(self, texts, batch_start_idx):
embeddings = self.embedding_model.encode(texts, batch_size=len(texts)).tolist()
for j, embedding in enumerate(embeddings):
self.collection.add(embeddings=[embedding], documents=[texts[j]], ids=[str(batch_start_idx + j)])
def search_context(self, query, n_results=1):
query_embeddings = self.embedding_model.encode(query).tolist()
return self.collection.query(query_embeddings=query_embeddings, n_results=n_results)
# Create a vector embedding
vector_store = VectorStore("embedding_vector")
vector_store.populate_vectors(dataset=None)
# Fine-tuning function
def fine_tune_model():
# Load your dataset
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full', split='train[:1500]', streaming=False)
# Prepare the data for training
def tokenize_function(examples):
return tokenizer(examples['title_cleaned'] + " " + examples['recipe_new'], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Define training arguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=3,
weight_decay=0.01,
)
# Initialize Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets,
)
# Train the model
trainer.train()
# Fine-tune the model
fine_tune_model()
# Define the chatbot response function
conversation_history = []
def chatbot_response(user_input):
global conversation_history
results = vector_store.search_context(user_input, n_results=1)
context = results['documents'][0] if results['documents'] else ""
conversation_history.append(f"User: {user_input}\nContext: {context[:150]}\nBot:")
inputs = tokenizer("\n".join(conversation_history), return_tensors="pt")
outputs = model.generate(**inputs, max_length=150, do_sample=True, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
conversation_history.append(response)
return response
# Gradio interface
def chat(user_input):
response = chatbot_response(user_input)
return response
css = ".gradio-container {background: url(https://upload.wikimedia.org/wikipedia/commons/f/f5/Spring_Kitchen_Line-Up_%28Unsplash%29.jpg)}"
iface = gr.Interface(fn=chat, inputs="text", outputs="text", css=css)
iface.launch()