Spaces:
Runtime error
Runtime error
Ankitajadhav
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,9 @@ import chromadb
|
|
9 |
from datasets import load_dataset
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
11 |
import gradio as gr
|
|
|
|
|
|
|
12 |
|
13 |
# Function to clear the cache
|
14 |
def clear_cache(model_name):
|
@@ -36,14 +39,11 @@ class VectorStore:
|
|
36 |
# Method to populate the vector store with embeddings from a dataset
|
37 |
def populate_vectors(self, dataset, batch_size=100):
|
38 |
# Use dataset streaming
|
39 |
-
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full', split='train'
|
40 |
|
41 |
# Process in batches
|
42 |
texts = []
|
43 |
-
max_examples = 15
|
44 |
for i, example in enumerate(dataset):
|
45 |
-
if i >= max_examples:
|
46 |
-
break
|
47 |
title = example['title_cleaned']
|
48 |
recipe = example['recipe_new']
|
49 |
meal_type = example['meal_type']
|
@@ -79,9 +79,14 @@ vector_store.populate_vectors(dataset=None)
|
|
79 |
|
80 |
# Load the model and tokenizer
|
81 |
# text generation model
|
82 |
-
model_name = "meta-llama/Meta-Llama-3-8B"
|
83 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
84 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
# Define the chatbot response function
|
87 |
def chatbot_response(user_input):
|
|
|
9 |
from datasets import load_dataset
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
11 |
import gradio as gr
|
12 |
+
# import packages load LLM model
|
13 |
+
from gpt4all import GPT4All
|
14 |
+
from pathlib import Path
|
15 |
|
16 |
# Function to clear the cache
|
17 |
def clear_cache(model_name):
|
|
|
39 |
# Method to populate the vector store with embeddings from a dataset
|
40 |
def populate_vectors(self, dataset, batch_size=100):
|
41 |
# Use dataset streaming
|
42 |
+
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full', split='train[:1500]')
|
43 |
|
44 |
# Process in batches
|
45 |
texts = []
|
|
|
46 |
for i, example in enumerate(dataset):
|
|
|
|
|
47 |
title = example['title_cleaned']
|
48 |
recipe = example['recipe_new']
|
49 |
meal_type = example['meal_type']
|
|
|
79 |
|
80 |
# Load the model and tokenizer
|
81 |
# text generation model
|
82 |
+
# model_name = "meta-llama/Meta-Llama-3-8B"
|
83 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
84 |
+
# model = AutoModelForCausalLM.from_pretrained(model_name)
|
85 |
+
|
86 |
+
# load model orca-mini general purpose model
|
87 |
+
model_name = 'mistral-7b-openorca.gguf2.Q4_0.gguf'
|
88 |
+
model_path = Path.home() / '.cache' / 'gpt4all'
|
89 |
+
model = GPT4All(model_name=model_name, model_path=model_path)
|
90 |
|
91 |
# Define the chatbot response function
|
92 |
def chatbot_response(user_input):
|