Spaces:
Runtime error
Runtime error
Ankitajadhav
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -19,33 +19,45 @@ class VectorStore:
|
|
19 |
self.collection = self.chroma_client.create_collection(name=collection_name)
|
20 |
|
21 |
# Method to populate the vector store with embeddings from a dataset
|
22 |
-
def populate_vectors(self, dataset):
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
def search_context(self, query, n_results=1):
|
38 |
query_embeddings = self.embedding_model.encode(query).tolist()
|
39 |
return self.collection.query(query_embeddings=query_embeddings, n_results=n_results)
|
40 |
|
41 |
-
|
42 |
-
# importing dataset hosted on huggingface
|
43 |
-
# dataset details - https://huggingface.co/datasets/Thefoodprocessor/recipe_new_with_features_full
|
44 |
-
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full')
|
45 |
-
|
46 |
# create a vector embedding
|
47 |
vector_store = VectorStore("embedding_vector")
|
48 |
-
vector_store.populate_vectors(dataset)
|
49 |
|
50 |
|
51 |
# Load the model and tokenizer
|
|
|
19 |
self.collection = self.chroma_client.create_collection(name=collection_name)
|
20 |
|
21 |
# Method to populate the vector store with embeddings from a dataset
|
22 |
+
def populate_vectors(self, dataset, batch_size=100):
|
23 |
+
# Use dataset streaming
|
24 |
+
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full', split='train', streaming=True)
|
25 |
+
|
26 |
+
# Process in batches
|
27 |
+
texts = []
|
28 |
+
|
29 |
+
for i, example in enumerate(dataset):
|
30 |
+
title = example['title_cleaned']
|
31 |
+
recipe = example['recipe_new']
|
32 |
+
meal_type = example['meal_type']
|
33 |
+
allergy = example['allergy_type']
|
34 |
+
ingredients_alternative = example['ingredients_alternatives']
|
35 |
+
|
36 |
+
# Concatenate the text from the columns
|
37 |
+
text = f"{title} {recipe} {meal_type} {allergy} {ingredients_alternative}"
|
38 |
+
texts.append(text)
|
39 |
+
|
40 |
+
# Process the batch
|
41 |
+
if (i + 1) % batch_size == 0:
|
42 |
+
self._process_batch(texts, i)
|
43 |
+
texts = []
|
44 |
+
|
45 |
+
# Process the remaining texts
|
46 |
+
if texts:
|
47 |
+
self._process_batch(texts, i)
|
48 |
+
|
49 |
+
def _process_batch(self, texts, batch_start_idx):
|
50 |
+
embeddings = self.embedding_model.encode(texts, batch_size=len(texts)).tolist()
|
51 |
+
for j, embedding in enumerate(embeddings):
|
52 |
+
self.collection.add(embeddings=[embedding], documents=[texts[j]], ids=[str(batch_start_idx + j)])
|
53 |
+
|
54 |
def search_context(self, query, n_results=1):
|
55 |
query_embeddings = self.embedding_model.encode(query).tolist()
|
56 |
return self.collection.query(query_embeddings=query_embeddings, n_results=n_results)
|
57 |
|
|
|
|
|
|
|
|
|
|
|
58 |
# create a vector embedding
|
59 |
vector_store = VectorStore("embedding_vector")
|
60 |
+
vector_store.populate_vectors(dataset=None)
|
61 |
|
62 |
|
63 |
# Load the model and tokenizer
|