Spaces:
Runtime error
Runtime error
Ankitajadhav
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,19 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import copy
|
3 |
from llama_cpp import Llama
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
import chromadb
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
-
import logging
|
8 |
-
|
9 |
-
# Initialize logging
|
10 |
-
logging.basicConfig(level=logging.INFO)
|
11 |
|
12 |
# Initialize the Llama model
|
13 |
llm = Llama(
|
14 |
-
model_path=hf_hub_download(
|
15 |
-
|
16 |
-
|
17 |
-
),
|
|
|
|
|
18 |
n_ctx=2048,
|
19 |
n_gpu_layers=50, # Adjust based on your VRAM
|
20 |
)
|
@@ -39,6 +38,9 @@ class VectorStore:
|
|
39 |
# Example initialization (assuming you've already populated the vector store)
|
40 |
vector_store = VectorStore("embedding_vector")
|
41 |
|
|
|
|
|
|
|
42 |
def generate_text(
|
43 |
message,
|
44 |
history: list[tuple[str, str]],
|
@@ -56,8 +58,6 @@ def generate_text(
|
|
56 |
input_prompt += f"{interaction[0]} [/INST] {interaction[1]} </s><s> [INST] "
|
57 |
input_prompt += f"{message} [/INST] "
|
58 |
|
59 |
-
logging.info("Input prompt:\n%s", input_prompt) # Debugging output
|
60 |
-
|
61 |
temp = ""
|
62 |
output = llm(
|
63 |
input_prompt,
|
@@ -71,28 +71,27 @@ def generate_text(
|
|
71 |
)
|
72 |
for out in output:
|
73 |
temp += out["choices"][0]["text"]
|
74 |
-
logging.info("Model output:\n%s", temp) # Log model output
|
75 |
yield temp
|
76 |
|
77 |
# Define the Gradio interface
|
78 |
-
demo = gr.
|
79 |
-
|
80 |
-
title="
|
81 |
-
description="
|
82 |
examples=[
|
83 |
["I have leftover rice, what can I make out of it?"],
|
84 |
["Can I make lunch for two people with this?"],
|
85 |
],
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
gr.
|
92 |
-
gr.Slider(minimum=
|
|
|
|
|
93 |
],
|
94 |
-
outputs=gr.Textbox(label="Response"),
|
95 |
-
live=True,
|
96 |
)
|
97 |
|
98 |
if __name__ == "__main__":
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
import copy
|
4 |
from llama_cpp import Llama
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
import chromadb
|
7 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Initialize the Llama model
|
10 |
llm = Llama(
|
11 |
+
# model_path=hf_hub_download(
|
12 |
+
# repo_id="microsoft/Phi-3-mini-4k-instruct-gguf",
|
13 |
+
# filename="Phi-3-mini-4k-instruct-q4.gguf",
|
14 |
+
# ),
|
15 |
+
model_path = "./models/Phi-3-mini-4k-instruct-gguf",
|
16 |
+
# model_path = "NicholasJohn/OpenBioLLM-Llama3-8B-Q5_K_M.gguf",
|
17 |
n_ctx=2048,
|
18 |
n_gpu_layers=50, # Adjust based on your VRAM
|
19 |
)
|
|
|
38 |
# Example initialization (assuming you've already populated the vector store)
|
39 |
vector_store = VectorStore("embedding_vector")
|
40 |
|
41 |
+
# Populate with your data if not already done
|
42 |
+
# vector_store.populate_vectors(your_texts, your_ids)
|
43 |
+
|
44 |
def generate_text(
|
45 |
message,
|
46 |
history: list[tuple[str, str]],
|
|
|
58 |
input_prompt += f"{interaction[0]} [/INST] {interaction[1]} </s><s> [INST] "
|
59 |
input_prompt += f"{message} [/INST] "
|
60 |
|
|
|
|
|
61 |
temp = ""
|
62 |
output = llm(
|
63 |
input_prompt,
|
|
|
71 |
)
|
72 |
for out in output:
|
73 |
temp += out["choices"][0]["text"]
|
|
|
74 |
yield temp
|
75 |
|
76 |
# Define the Gradio interface
|
77 |
+
demo = gr.ChatInterface(
|
78 |
+
generate_text,
|
79 |
+
title="llama-cpp-python on GPU with ChromaDB",
|
80 |
+
description="Running LLM with context retrieval from ChromaDB",
|
81 |
examples=[
|
82 |
["I have leftover rice, what can I make out of it?"],
|
83 |
["Can I make lunch for two people with this?"],
|
84 |
],
|
85 |
+
cache_examples=False,
|
86 |
+
retry_btn=None,
|
87 |
+
undo_btn="Delete Previous",
|
88 |
+
clear_btn="Clear",
|
89 |
+
additional_inputs=[
|
90 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
91 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
92 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
93 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
94 |
],
|
|
|
|
|
95 |
)
|
96 |
|
97 |
if __name__ == "__main__":
|