Spaces:
Runtime error
Runtime error
Ankitajadhav
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -8,21 +8,25 @@ import chromadb
|
|
8 |
from datasets import load_dataset
|
9 |
import gradio as gr
|
10 |
import torch
|
|
|
11 |
|
|
|
|
|
12 |
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
17 |
-
torch.random.manual_seed(0)
|
18 |
-
model = AutoModelForCausalLM.from_pretrained(
|
19 |
-
"microsoft/Phi-3-mini-4k-instruct",
|
20 |
-
low_cpu_mem_usage=True,
|
21 |
-
torch_dtype="auto",
|
22 |
-
trust_remote_code=True,
|
23 |
-
)
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Function to clear the cache
|
28 |
def clear_cache(model_name):
|
@@ -36,7 +40,6 @@ def clear_cache(model_name):
|
|
36 |
# Embedding vector
|
37 |
class VectorStore:
|
38 |
def __init__(self, collection_name):
|
39 |
-
# Initialize the embedding model
|
40 |
try:
|
41 |
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
|
42 |
except Exception as e:
|
@@ -45,33 +48,24 @@ class VectorStore:
|
|
45 |
self.chroma_client = chromadb.Client()
|
46 |
self.collection = self.chroma_client.create_collection(name=collection_name)
|
47 |
|
48 |
-
|
49 |
-
def populate_vectors(self, dataset, batch_size=10):
|
50 |
-
# Use dataset streaming
|
51 |
-
#dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full', split='train[:1500]', streaming=True)
|
52 |
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full', split='train')
|
53 |
-
dataset = dataset.select(range(
|
54 |
|
55 |
texts = []
|
56 |
-
i = 0
|
57 |
for example in dataset:
|
58 |
title = example['title_cleaned']
|
59 |
recipe = example['recipe_new']
|
|
|
60 |
allergy = example['allergy_type']
|
61 |
-
|
62 |
-
|
63 |
-
# Concatenate the text from the columns
|
64 |
-
text = f"{title} {recipe} {allergy}"
|
65 |
texts.append(text)
|
66 |
-
|
67 |
-
# Process the batch
|
68 |
if (i + 1) % batch_size == 0:
|
69 |
self._process_batch(texts, i)
|
70 |
texts = []
|
71 |
-
|
72 |
-
i += 1 # Increment index
|
73 |
-
|
74 |
-
# Process the remaining texts
|
75 |
if texts:
|
76 |
self._process_batch(texts, i)
|
77 |
|
@@ -84,47 +78,42 @@ class VectorStore:
|
|
84 |
query_embeddings = self.embedding_model.encode(query).tolist()
|
85 |
return self.collection.query(query_embeddings=query_embeddings, n_results=n_results)
|
86 |
|
87 |
-
# Create a vector embedding
|
88 |
vector_store = VectorStore("embedding_vector")
|
89 |
vector_store.populate_vectors(dataset=None)
|
90 |
|
91 |
-
# Fine-tuning function
|
92 |
def fine_tune_model():
|
93 |
-
# Load your dataset
|
94 |
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full', split='train')
|
95 |
-
dataset = dataset.select(range(
|
96 |
|
97 |
-
# Prepare the data for training
|
98 |
def tokenize_function(examples):
|
99 |
-
return tokenizer(
|
|
|
|
|
|
|
|
|
100 |
|
101 |
-
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
102 |
|
103 |
-
# Define training arguments
|
104 |
training_args = TrainingArguments(
|
105 |
output_dir="./results",
|
106 |
evaluation_strategy="epoch",
|
107 |
learning_rate=2e-5,
|
108 |
-
per_device_train_batch_size=
|
109 |
-
per_device_eval_batch_size=
|
110 |
num_train_epochs=3,
|
111 |
weight_decay=0.01,
|
112 |
)
|
113 |
|
114 |
-
# Initialize Trainer
|
115 |
trainer = Trainer(
|
116 |
model=model,
|
117 |
args=training_args,
|
118 |
train_dataset=tokenized_datasets,
|
119 |
)
|
120 |
|
121 |
-
# Train the model
|
122 |
trainer.train()
|
123 |
|
124 |
-
# Fine-tune the model
|
125 |
fine_tune_model()
|
126 |
|
127 |
-
# Define the chatbot response function
|
128 |
conversation_history = []
|
129 |
|
130 |
def chatbot_response(user_input):
|
@@ -138,7 +127,6 @@ def chatbot_response(user_input):
|
|
138 |
conversation_history.append(response)
|
139 |
return response
|
140 |
|
141 |
-
# Gradio interface
|
142 |
def chat(user_input):
|
143 |
response = chatbot_response(user_input)
|
144 |
return response
|
|
|
8 |
from datasets import load_dataset
|
9 |
import gradio as gr
|
10 |
import torch
|
11 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
|
12 |
|
13 |
+
# Set environment variables to address warnings
|
14 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
15 |
|
16 |
+
# Ensure necessary packages are installed
|
17 |
+
!pip install accelerate
|
18 |
+
!pip install flash-attention
|
19 |
|
20 |
+
torch.random.manual_seed(0)
|
21 |
+
model_name = "microsoft/Phi-3-mini-4k-instruct"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
24 |
+
model_name,
|
25 |
+
low_cpu_mem_usage=True,
|
26 |
+
torch_dtype="auto",
|
27 |
+
trust_remote_code=True,
|
28 |
+
)
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
30 |
|
31 |
# Function to clear the cache
|
32 |
def clear_cache(model_name):
|
|
|
40 |
# Embedding vector
|
41 |
class VectorStore:
|
42 |
def __init__(self, collection_name):
|
|
|
43 |
try:
|
44 |
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
|
45 |
except Exception as e:
|
|
|
48 |
self.chroma_client = chromadb.Client()
|
49 |
self.collection = self.chroma_client.create_collection(name=collection_name)
|
50 |
|
51 |
+
def populate_vectors(self, dataset, batch_size=20):
|
|
|
|
|
|
|
52 |
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full', split='train')
|
53 |
+
dataset = dataset.select(range(1500))
|
54 |
|
55 |
texts = []
|
56 |
+
i = 0
|
57 |
for example in dataset:
|
58 |
title = example['title_cleaned']
|
59 |
recipe = example['recipe_new']
|
60 |
+
meal_type = example['meal_type']
|
61 |
allergy = example['allergy_type']
|
62 |
+
ingredients_alternative = example['ingredients_alternatives']
|
63 |
+
text = f"{title} {recipe} {meal_type} {allergy} {ingredients_alternative}"
|
|
|
|
|
64 |
texts.append(text)
|
|
|
|
|
65 |
if (i + 1) % batch_size == 0:
|
66 |
self._process_batch(texts, i)
|
67 |
texts = []
|
68 |
+
i += 1
|
|
|
|
|
|
|
69 |
if texts:
|
70 |
self._process_batch(texts, i)
|
71 |
|
|
|
78 |
query_embeddings = self.embedding_model.encode(query).tolist()
|
79 |
return self.collection.query(query_embeddings=query_embeddings, n_results=n_results)
|
80 |
|
|
|
81 |
vector_store = VectorStore("embedding_vector")
|
82 |
vector_store.populate_vectors(dataset=None)
|
83 |
|
|
|
84 |
def fine_tune_model():
|
|
|
85 |
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full', split='train')
|
86 |
+
dataset = dataset.select(range(1500))
|
87 |
|
|
|
88 |
def tokenize_function(examples):
|
89 |
+
return tokenizer(
|
90 |
+
[" ".join([title, recipe]) for title, recipe in zip(examples['title_cleaned'], examples['recipe_new'])],
|
91 |
+
padding="max_length",
|
92 |
+
truncation=True
|
93 |
+
)
|
94 |
|
95 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True, batch_size=8)
|
96 |
|
|
|
97 |
training_args = TrainingArguments(
|
98 |
output_dir="./results",
|
99 |
evaluation_strategy="epoch",
|
100 |
learning_rate=2e-5,
|
101 |
+
per_device_train_batch_size=4,
|
102 |
+
per_device_eval_batch_size=4,
|
103 |
num_train_epochs=3,
|
104 |
weight_decay=0.01,
|
105 |
)
|
106 |
|
|
|
107 |
trainer = Trainer(
|
108 |
model=model,
|
109 |
args=training_args,
|
110 |
train_dataset=tokenized_datasets,
|
111 |
)
|
112 |
|
|
|
113 |
trainer.train()
|
114 |
|
|
|
115 |
fine_tune_model()
|
116 |
|
|
|
117 |
conversation_history = []
|
118 |
|
119 |
def chatbot_response(user_input):
|
|
|
127 |
conversation_history.append(response)
|
128 |
return response
|
129 |
|
|
|
130 |
def chat(user_input):
|
131 |
response = chatbot_response(user_input)
|
132 |
return response
|