# import packages __import__('pysqlite3') import sys sys.modules['sqlite3'] = sys.modules.pop('pysqlite3') from sentence_transformers import SentenceTransformer import chromadb from datasets import load_dataset from gpt4all import GPT4All # Embedding vector class VectorStore: def __init__(self, collection_name): # Initialize the embedding model self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1') self.chroma_client = chromadb.Client() self.collection = self.chroma_client.create_collection(name=collection_name) # Method to populate the vector store with embeddings from a dataset def populate_vectors(self, dataset): # Select the text columns to concatenate title = dataset['train']['title_cleaned'][:5000] # Limiting to 100 examples for the demo recipe = dataset['train']['recipe_new'][:5000] meal_type = dataset['train']['meal_type'][:5000] allergy = dataset['train']['allergy_type'][:5000] ingredients_alternative = dataset['train']['ingredients_alternatives'][:5000] # Concatenate the text from both columns texts = [f"{tit} {rep} {meal} {alle} {ingr} " for tit, rep, meal,alle, ingr in zip(title,recipe,meal_type,allergy,ingredients_alternative)] for i, item in enumerate(texts): embeddings = self.embedding_model.encode(item).tolist() self.collection.add(embeddings=[embeddings], documents=[item], ids=[str(i)]) # # Method to search the ChromaDB collection for relevant context based on a query def search_context(self, query, n_results=1): query_embeddings = self.embedding_model.encode(query).tolist() return self.collection.query(query_embeddings=query_embeddings, n_results=n_results) # importing dataset hosted on huggingface # dataset details - https://huggingface.co/datasets/Thefoodprocessor/recipe_new_with_features_full dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full') # create a vector embedding vector_store = VectorStore("embedding_vector") vector_store.populate_vectors(dataset) # loading gpt4all language model # load model Chat based model mistral-7b-openorca.gguf2.Q4_0.gguf # detail about gpt4all and model information - https://gpt4all.io/index.html model_name = 'Meta-Llama-3-8B-Instruct.Q4_0.gguf' # .gguf represents quantized model model_path = "gpt4all" # add path to download load the model locally, download once and load for subsequent inference model = GPT4All(model_name=model_name, model_path=model_path,device="cuda")