Spaces:
Runtime error
Runtime error
AnnaPalatkina
commited on
Commit
•
92cb663
1
Parent(s):
5943c14
add finetuning
Browse files- fine_tune.py +236 -0
- requirements.txt +28 -0
fine_tune.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AdamW, get_linear_schedule_with_warmup
|
2 |
+
from sklearn.metrics import classification_report, f1_score
|
3 |
+
from torch.utils.data import Dataset, DataLoader
|
4 |
+
from argparse import ArgumentParser
|
5 |
+
from str2bool import str2bool
|
6 |
+
from torch import nn
|
7 |
+
import pandas as pd
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
|
11 |
+
|
12 |
+
parser = ArgumentParser()
|
13 |
+
parser.add_argument("-dataframe", required=True, help="Path to dataframe with columns ['text', 'label', 'split']") # 'data/small_dataset.csv'
|
14 |
+
parser.add_argument("-model",required=True, help='Pre-traied model from huggingface or path to local folder with config.json') # '../norbert3-x-small/'
|
15 |
+
parser.add_argument("-custom_wrapper", default=False, type=lambda x: bool(str2bool(x)), help='Boolean argument - True if use custom wrapper, False if use AutoModelForSequenceClassification') # True
|
16 |
+
parser.add_argument("-lr", default='1e-05', help='Learning rate.')
|
17 |
+
parser.add_argument("-max_length", default='512', help='Max lenght of the sequence in tokens.')
|
18 |
+
parser.add_argument("-warmup", default='2', help='The number of steps for the warmup phase.')
|
19 |
+
parser.add_argument("-batch_size", default='4', help='Batch size.')
|
20 |
+
parser.add_argument("-epochs", default='20', help='Number of epochs for training.')
|
21 |
+
args = parser.parse_args()
|
22 |
+
|
23 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
24 |
+
|
25 |
+
class Dataset(Dataset):
|
26 |
+
def __init__(self, texts, targets, tokenizer, max_len):
|
27 |
+
self.texts = texts
|
28 |
+
self.targets = targets
|
29 |
+
self.tokenizer = tokenizer
|
30 |
+
self.max_len = max_len
|
31 |
+
|
32 |
+
def __len__(self):
|
33 |
+
return len(self.texts)
|
34 |
+
|
35 |
+
def __getitem__(self, item):
|
36 |
+
text = str(self.texts[item])
|
37 |
+
target = self.targets[item]
|
38 |
+
encoding = self.tokenizer.encode_plus(
|
39 |
+
text,
|
40 |
+
add_special_tokens=True,
|
41 |
+
max_length=self.max_len,
|
42 |
+
return_token_type_ids=False,
|
43 |
+
pad_to_max_length=True,
|
44 |
+
return_attention_mask=True,
|
45 |
+
truncation=True,
|
46 |
+
return_tensors='pt',
|
47 |
+
)
|
48 |
+
|
49 |
+
return {
|
50 |
+
'text': text,
|
51 |
+
'input_ids': encoding['input_ids'].flatten(),
|
52 |
+
'attention_mask': encoding['attention_mask'].flatten(),
|
53 |
+
'targets': torch.tensor(target, dtype=torch.long)
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
def create_data_loader(df, tokenizer, max_len, batch_size):
|
58 |
+
ds = Dataset(
|
59 |
+
texts=df.text.to_numpy(),
|
60 |
+
targets=df.label.to_numpy(),
|
61 |
+
tokenizer=tokenizer,
|
62 |
+
max_len=max_len
|
63 |
+
)
|
64 |
+
return DataLoader(
|
65 |
+
ds,
|
66 |
+
batch_size=batch_size
|
67 |
+
)
|
68 |
+
|
69 |
+
class SentimentClassifier(nn.Module):
|
70 |
+
|
71 |
+
def __init__(self, n_classes):
|
72 |
+
super(SentimentClassifier, self).__init__()
|
73 |
+
|
74 |
+
if not args.custom_wrapper:
|
75 |
+
self.bert = AutoModelForSequenceClassification.from_pretrained(args.model, num_labels=n_classes, ignore_mismatched_sizes=True)
|
76 |
+
if args.custom_wrapper:
|
77 |
+
from modeling_norbert import NorbertForSequenceClassification
|
78 |
+
self.bert = NorbertForSequenceClassification.from_pretrained(args.model, num_labels=n_classes, ignore_mismatched_sizes=True)
|
79 |
+
|
80 |
+
def forward(self, input_ids, attention_mask):
|
81 |
+
|
82 |
+
bert_output = self.bert(
|
83 |
+
input_ids=input_ids,
|
84 |
+
attention_mask=attention_mask,
|
85 |
+
return_dict=True
|
86 |
+
)
|
87 |
+
|
88 |
+
logits = bert_output.logits
|
89 |
+
|
90 |
+
return logits
|
91 |
+
|
92 |
+
|
93 |
+
def train_epoch(
|
94 |
+
model,
|
95 |
+
data_loader,
|
96 |
+
loss_fn,
|
97 |
+
optimizer,
|
98 |
+
device,
|
99 |
+
scheduler,
|
100 |
+
n_examples
|
101 |
+
):
|
102 |
+
|
103 |
+
y_true, y_pred = [], []
|
104 |
+
model = model.train()
|
105 |
+
losses = []
|
106 |
+
correct_predictions = 0
|
107 |
+
|
108 |
+
for d in data_loader:
|
109 |
+
input_ids = d["input_ids"].to(device)
|
110 |
+
attention_mask = d["attention_mask"].to(device)
|
111 |
+
targets = d["targets"].to(device)
|
112 |
+
y_true += targets.tolist()
|
113 |
+
outputs = model(
|
114 |
+
input_ids=input_ids,
|
115 |
+
attention_mask=attention_mask
|
116 |
+
)
|
117 |
+
preds_idxs = torch.max(outputs, dim=1).indices
|
118 |
+
y_pred += preds_idxs.numpy().tolist()
|
119 |
+
loss = loss_fn(outputs, targets)
|
120 |
+
correct_predictions += torch.sum(preds_idxs == targets)
|
121 |
+
|
122 |
+
losses.append(loss.item())
|
123 |
+
loss.backward()
|
124 |
+
nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
|
125 |
+
optimizer.step()
|
126 |
+
scheduler.step()
|
127 |
+
optimizer.zero_grad()
|
128 |
+
f1 = f1_score(y_true, y_pred, average='macro')
|
129 |
+
|
130 |
+
return correct_predictions.double() / n_examples, np.mean(losses), f1
|
131 |
+
|
132 |
+
def eval_model(model, data_loader, loss_fn, device, n_examples):
|
133 |
+
model = model.eval()
|
134 |
+
losses = []
|
135 |
+
correct_predictions = 0
|
136 |
+
y_true, y_pred = [], []
|
137 |
+
with torch.no_grad():
|
138 |
+
for d in data_loader:
|
139 |
+
input_ids = d["input_ids"].to(device)
|
140 |
+
attention_mask = d["attention_mask"].to(device)
|
141 |
+
targets = d["targets"].to(device)
|
142 |
+
y_true += targets.tolist()
|
143 |
+
outputs = model(
|
144 |
+
input_ids=input_ids,
|
145 |
+
attention_mask=attention_mask
|
146 |
+
)
|
147 |
+
_, preds = torch.max(outputs, dim=1)
|
148 |
+
y_pred += preds.tolist()
|
149 |
+
loss = loss_fn(outputs, targets)
|
150 |
+
correct_predictions += torch.sum(preds == targets)
|
151 |
+
losses.append(loss.item())
|
152 |
+
f1 = f1_score(y_true, y_pred, average='macro')
|
153 |
+
report = classification_report(y_true, y_pred)
|
154 |
+
return correct_predictions.double() / n_examples, np.mean(losses), f1, report
|
155 |
+
|
156 |
+
|
157 |
+
df = pd.read_csv(args.dataframe)
|
158 |
+
|
159 |
+
df_train = df[df['split'] == 'train']
|
160 |
+
df_val = df[df['split'] == 'dev']
|
161 |
+
df_test = df[df['split'] == 'test']
|
162 |
+
|
163 |
+
print(f'Train samples: {len(df_train)}')
|
164 |
+
print(f'Validation samples: {len(df_val)}')
|
165 |
+
print(f'Test samples: {len(df_test)}')
|
166 |
+
|
167 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model)
|
168 |
+
|
169 |
+
max_length = int(args.max_length)
|
170 |
+
batch_size = int(args.batch_size)
|
171 |
+
epochs = int(args.epochs)
|
172 |
+
|
173 |
+
train_data_loader = create_data_loader(df_train, tokenizer, max_length, batch_size)
|
174 |
+
val_data_loader = create_data_loader(df_val, tokenizer, max_length, batch_size)
|
175 |
+
test_data_loader = create_data_loader(df_test, tokenizer, max_length, batch_size)
|
176 |
+
|
177 |
+
class_names = df.label.unique()
|
178 |
+
model = SentimentClassifier(len(class_names))
|
179 |
+
model = model.to(device)
|
180 |
+
|
181 |
+
loss_fn = nn.CrossEntropyLoss().to(device)
|
182 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=float(args.lr))
|
183 |
+
total_steps = len(train_data_loader) * epochs
|
184 |
+
scheduler = get_linear_schedule_with_warmup(
|
185 |
+
optimizer,
|
186 |
+
num_warmup_steps=int(args.warmup),
|
187 |
+
num_training_steps=total_steps
|
188 |
+
)
|
189 |
+
|
190 |
+
for epoch in range(epochs):
|
191 |
+
print(f'Epoch {epoch + 1}/{epochs}')
|
192 |
+
print('-' * 10)
|
193 |
+
train_acc, train_loss, train_f1 = train_epoch(
|
194 |
+
model,
|
195 |
+
train_data_loader,
|
196 |
+
loss_fn,
|
197 |
+
optimizer,
|
198 |
+
device,
|
199 |
+
scheduler,
|
200 |
+
len(df_train)
|
201 |
+
)
|
202 |
+
print()
|
203 |
+
print(f'Train loss -- {train_loss} -- accuracy {train_acc} -- f1 {train_f1}')
|
204 |
+
|
205 |
+
# save model
|
206 |
+
# !!!!!!!!!!!!!!!!
|
207 |
+
model_name = args.model.split('/')[-1] if args.model.split('/')[-1] != '' else args.model.split('/')[-2]
|
208 |
+
|
209 |
+
torch.save(model.state_dict(),f'saved_models/{model_name}_epoch_{epochs}.bin')
|
210 |
+
|
211 |
+
val_acc, val_loss, val_f1, report = eval_model(
|
212 |
+
model,
|
213 |
+
val_data_loader,
|
214 |
+
loss_fn,
|
215 |
+
device,
|
216 |
+
len(df_val)
|
217 |
+
)
|
218 |
+
print()
|
219 |
+
print(f'Val loss {val_loss} -- accuracy -- {val_acc} -- f1 {val_f1}')
|
220 |
+
print(report)
|
221 |
+
|
222 |
+
|
223 |
+
test_acc, test_loss, test_f1, test_report = eval_model(
|
224 |
+
model,
|
225 |
+
test_data_loader,
|
226 |
+
loss_fn,
|
227 |
+
device,
|
228 |
+
len(df_test)
|
229 |
+
)
|
230 |
+
|
231 |
+
|
232 |
+
print()
|
233 |
+
print('-------------TESTINGS-----------------')
|
234 |
+
print()
|
235 |
+
print(f'Test accuracy {test_acc}, f1 {test_f1}')
|
236 |
+
print(test_report)
|
requirements.txt
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
certifi==2022.12.7
|
2 |
+
charset-normalizer==3.0.1
|
3 |
+
docopt==0.6.2
|
4 |
+
filelock==3.9.0
|
5 |
+
huggingface-hub==0.11.1
|
6 |
+
idna==3.4
|
7 |
+
joblib==1.2.0
|
8 |
+
numpy==1.24.1
|
9 |
+
packaging==23.0
|
10 |
+
pandas==1.5.2
|
11 |
+
pipreqs==0.4.11
|
12 |
+
python-dateutil==2.8.2
|
13 |
+
pytz==2022.7
|
14 |
+
PyYAML==6.0
|
15 |
+
regex==2022.10.31
|
16 |
+
requests==2.28.2
|
17 |
+
scikit-learn==1.2.0
|
18 |
+
scipy==1.10.0
|
19 |
+
six==1.16.0
|
20 |
+
str2bool==1.1
|
21 |
+
threadpoolctl==3.1.0
|
22 |
+
tokenizers==0.13.2
|
23 |
+
torch==1.13.1
|
24 |
+
tqdm==4.64.1
|
25 |
+
transformers==4.25.1
|
26 |
+
typing_extensions==4.4.0
|
27 |
+
urllib3==1.26.14
|
28 |
+
yarg==0.1.9
|