Spaces:
Runtime error
Runtime error
File size: 7,938 Bytes
8cb5b3c ffd0bdc 8cb5b3c ffd0bdc 8cb5b3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
from .utils import load_model,load_processor,normalize_box,compare_boxes,adjacent
from .annotate_image import get_flattened_output,annotate_image
from PIL import Image,ImageDraw, ImageFont
import logging
import torch
import json
logger = logging.getLogger(__name__)
class ModelHandler(object):
"""
A base Model handler implementation.
"""
def __init__(self):
self.model = None
self.model_dir = None
self.device = 'cpu'
self.error = None
# self._context = None
# self._batch_size = 0
self.initialized = False
self._raw_input_data = None
self._processed_data = None
self._images_size = None
def initialize(self, context):
"""
Initialize model. This will be called during model loading time
:param context: Initial context contains model server system properties.
:return:
"""
logger.info("Loading transformer model")
self._context = context
properties = self._context
# self._batch_size = properties["batch_size"] or 1
self.model_dir = properties.get("model_dir")
self.model = self.load(self.model_dir)
self.initialized = True
def preprocess(self, batch):
"""
Transform raw input into model input data.
:param batch: list of raw requests, should match batch size
:return: list of preprocessed model input data
"""
# Take the input data and pre-process it make it inference ready
# assert self._batch_size == len(batch), "Invalid input batch size: {}".format(len(batch))
inference_dict = batch
self._raw_input_data = inference_dict
processor = load_processor()
images = [Image.open(path).convert("RGB")
for path in inference_dict['image_path']]
self._images_size = [img.size for img in images]
words = inference_dict['words']
boxes = [[normalize_box(box, images[i].size[0], images[i].size[1])
for box in doc] for i, doc in enumerate(inference_dict['bboxes'])]
encoded_inputs = processor(
images, words, boxes=boxes, return_tensors="pt", padding="max_length", truncation=True)
self._processed_data = encoded_inputs
return encoded_inputs
def load(self, model_dir):
"""The load handler is responsible for loading the hunggingface transformer model.
Returns:
hf_pipeline (Pipeline): A Hugging Face Transformer pipeline.
"""
# TODO model dir should be microsoft/layoutlmv2-base-uncased
model = load_model(model_dir)
return model
def inference(self, model_input):
"""
Internal inference methods
:param model_input: transformed model input data
:return: list of inference output in NDArray
"""
# TODO load the model state_dict before running the inference
# Do some inference call to engine here and return output
with torch.no_grad():
inference_outputs = self.model(**model_input)
predictions = inference_outputs.logits.argmax(-1).tolist()
results = []
for i in range(len(predictions)):
tmp = dict()
tmp[f'output_{i}'] = predictions[i]
results.append(tmp)
return [results]
def postprocess(self, inference_output):
docs = []
k = 0
for page, doc_words in enumerate(self._raw_input_data['words']):
doc_list = []
width, height = self._images_size[page]
for i, doc_word in enumerate(doc_words, start=0):
word_tagging = None
word_labels = []
word = dict()
word['id'] = k
k += 1
word['text'] = doc_word
word['pageNum'] = page + 1
word['box'] = self._raw_input_data['bboxes'][page][i]
_normalized_box = normalize_box(
self._raw_input_data['bboxes'][page][i], width, height)
for j, box in enumerate(self._processed_data['bbox'].tolist()[page]):
if compare_boxes(box, _normalized_box):
if self.model.config.id2label[inference_output[0][page][f'output_{page}'][j]] != 'O':
word_labels.append(
self.model.config.id2label[inference_output[0][page][f'output_{page}'][j]][2:])
else:
word_labels.append('other')
if word_labels != []:
word_tagging = word_labels[0] if word_labels[0] != 'other' else word_labels[-1]
else:
word_tagging = 'other'
word['label'] = word_tagging
word['pageSize'] = {'width': width, 'height': height}
if word['label'] != 'other':
doc_list.append(word)
spans = []
def adjacents(entity): return [
adj for adj in doc_list if adjacent(entity, adj)]
output_test_tmp = doc_list[:]
for entity in doc_list:
if adjacents(entity) == []:
spans.append([entity])
output_test_tmp.remove(entity)
while output_test_tmp != []:
span = [output_test_tmp[0]]
output_test_tmp = output_test_tmp[1:]
while output_test_tmp != [] and adjacent(span[-1], output_test_tmp[0]):
span.append(output_test_tmp[0])
output_test_tmp.remove(output_test_tmp[0])
spans.append(span)
output_spans = []
for span in spans:
if len(span) == 1:
output_span = {"text": span[0]['text'],
"label": span[0]['label'],
"words": [{
'id': span[0]['id'],
'box': span[0]['box'],
'text': span[0]['text']
}],
}
else:
output_span = {"text": ' '.join([entity['text'] for entity in span]),
"label": span[0]['label'],
"words": [{
'id': entity['id'],
'box': entity['box'],
'text': entity['text']
} for entity in span]
}
output_spans.append(output_span)
docs.append({f'output': output_spans})
return [json.dumps(docs, ensure_ascii=False)]
def handle(self, data, context):
"""
Call preprocess, inference and post-process functions
:param data: input data
:param context: mms context
"""
model_input = self.preprocess(data)
model_out = self.inference(model_input)
inference_out = self.postprocess(model_out)[0]
with open('LayoutlMV3InferenceOutput.json', 'w') as inf_out:
inf_out.write(inference_out)
inference_out_list = json.loads(inference_out)
flattened_output_list = get_flattened_output(inference_out_list)
result = []
for i, flattened_output in enumerate(flattened_output_list):
res = annotate_image(data['image_path'][i], flattened_output)
result.append(res)
return result
_service = ModelHandler()
def handle(data, context):
if not _service.initialized:
_service.initialize(context)
if data is None:
return None
return _service.handle(data, context)
|