Antoine101 commited on
Commit
167da29
·
verified ·
1 Parent(s): 51440fd

Switched synthesiser to mms-tts-fra and updated translater to generate french translation.

Browse files
Files changed (1) hide show
  1. app.py +10 -6
app.py CHANGED
@@ -3,7 +3,7 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -14,21 +14,25 @@ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base",
14
  # load text-to-speech checkpoint and speaker embeddings
15
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
 
 
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
 
32
  return speech.cpu()
33
 
34
 
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, VitsModel, VitsTokenizer
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
+ #model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
+ #vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
+ model = VitsModel.from_pretrained("microsoft/mms-tts-fra").to(device)
20
+ tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra").to(device)
21
 
22
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
23
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
24
 
25
 
26
  def translate(audio):
27
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "fr"})
28
  return outputs["text"]
29
 
30
 
31
  def synthesise(text):
32
+ #inputs = processor(text=text, return_tensors="pt")
33
+ #speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
34
+ inputs = tokenizer(text, return_tensors="pt")
35
+ speech = model(inputs["input_ids"].to(device))
36
  return speech.cpu()
37
 
38