Antoine101
commited on
Switched synthesiser to mms-tts-fra and updated translater to generate french translation.
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -14,21 +14,25 @@ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base",
|
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
|
|
|
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
29 |
def synthesise(text):
|
30 |
-
inputs = processor(text=text, return_tensors="pt")
|
31 |
-
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
|
|
|
|
32 |
return speech.cpu()
|
33 |
|
34 |
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, VitsModel, VitsTokenizer
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
+
#model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
+
#vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
+
model = VitsModel.from_pretrained("microsoft/mms-tts-fra").to(device)
|
20 |
+
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra").to(device)
|
21 |
|
22 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
23 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
24 |
|
25 |
|
26 |
def translate(audio):
|
27 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "fr"})
|
28 |
return outputs["text"]
|
29 |
|
30 |
|
31 |
def synthesise(text):
|
32 |
+
#inputs = processor(text=text, return_tensors="pt")
|
33 |
+
#speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
34 |
+
inputs = tokenizer(text, return_tensors="pt")
|
35 |
+
speech = model(inputs["input_ids"].to(device))
|
36 |
return speech.cpu()
|
37 |
|
38 |
|