Antoine101 commited on
Commit
7e75b62
·
verified ·
1 Parent(s): 58effb1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -10
app.py CHANGED
@@ -14,10 +14,10 @@ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base",
14
  # load text-to-speech checkpoint and speaker embeddings
15
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- #model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- #vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
- model = VitsModel.from_pretrained("facebook/mms-tts-fra")
20
- tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra")
21
 
22
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
23
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
@@ -29,17 +29,19 @@ def translate(audio):
29
 
30
 
31
  def synthesise(text):
32
- #inputs = processor(text=text, return_tensors="pt")
33
- #speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
34
- inputs = tokenizer(text, return_tensors="pt")
35
- speech = model(inputs["input_ids"])
36
- return speech["waveform"]
 
37
 
38
 
39
  def speech_to_speech_translation(audio):
40
  translated_text = translate(audio)
41
  synthesised_speech = synthesise(translated_text)
42
- synthesised_speech = (synthesised_speech.detach().numpy() * 32767).astype(np.int16)
 
43
  return 16000, synthesised_speech
44
 
45
 
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
+ model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
+ #model = VitsModel.from_pretrained("facebook/mms-tts-fra")
20
+ #tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra")
21
 
22
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
23
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
 
29
 
30
 
31
  def synthesise(text):
32
+ inputs = processor(text=text, return_tensors="pt")
33
+ speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
34
+ #inputs = tokenizer(text, return_tensors="pt")
35
+ #speech = model(inputs["input_ids"])
36
+ #output = speech["waveform"]
37
+ return speech
38
 
39
 
40
  def speech_to_speech_translation(audio):
41
  translated_text = translate(audio)
42
  synthesised_speech = synthesise(translated_text)
43
+ #synthesised_speech = (synthesised_speech.detach().numpy() * 32767).astype(np.int16)
44
+ synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
45
  return 16000, synthesised_speech
46
 
47