Antoine101
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -14,10 +14,10 @@ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base",
|
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
-
|
20 |
-
|
21 |
|
22 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
23 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
@@ -29,12 +29,12 @@ def translate(audio):
|
|
29 |
|
30 |
|
31 |
def synthesise(text):
|
32 |
-
inputs = processor(text=text, return_tensors="pt")
|
33 |
-
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
34 |
-
output = speech
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
print(output)
|
39 |
print(output.size())
|
40 |
print(torch.min(output))
|
|
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
+
#model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
+
#vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-fra")
|
20 |
+
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra")
|
21 |
|
22 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
23 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
|
|
29 |
|
30 |
|
31 |
def synthesise(text):
|
32 |
+
#inputs = processor(text=text, return_tensors="pt")
|
33 |
+
#speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
34 |
+
#output = speech
|
35 |
+
inputs = tokenizer(text, return_tensors="pt")
|
36 |
+
speech = model(inputs["input_ids"])
|
37 |
+
output = torch.squeeze(speech["waveform"].detach())
|
38 |
print(output)
|
39 |
print(output.size())
|
40 |
print(torch.min(output))
|