File size: 22,075 Bytes
f8c6d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import os
import sqlite3
import pandas as pd
import numpy as np
import gradio as gr
import yfinance as yf
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
from sklearn.metrics import mean_squared_error, accuracy_score
import joblib
from datetime import datetime, timedelta

class AdvancedHedgeFundManagementSystem:
    def __init__(self, db_path='data/advanced_hedge_fund_database.sqlite'): # path to database corrected
        """
        Initialize the Advanced Hedge Fund Management System
        
        Args:
            db_path (str): Path to the SQLite database
        """
        self.db_path = db_path
        self.conn = None
        self.cursor = None
        
        # Investment Types
        self.investment_types = [
            'Stocks', 'Bonds', 'ETFs', 'Mutual Funds', 
            'Real Estate', 'Cryptocurrencies', 'Commodities', 
            'Private Equity', 'Hedge Funds', 'Derivatives'
        ]
        
        # Market Indices for Benchmarking
        self.market_indices = [
            '^GSPC',  # S&P 500
            '^DJI',   # Dow Jones Industrial Average
            '^IXIC',  # NASDAQ Composite
            '^RUT',   # Russell 2000
        ]
        
        # Initialize database and create tables
        self.initialize_database()
        
        # Load or train predictive models
        self.load_or_train_models()

        # Define some common Equity and Bond ETF
        self.equity_etfs = ['SPY', 'QQQ', 'IWM', 'VOO', 'IVV'] # US equities
        self.bond_etfs = ['BND', 'AGG', 'LQD', 'TLT', 'SHY']  # US bonds

    
    def initialize_database(self):
        """
        Create database connection and initialize tables
        """
        try:
            self.conn = sqlite3.connect(self.db_path)
            self.cursor = self.conn.cursor()
            
            # Enhanced clients table
            self.cursor.execute('''
            CREATE TABLE IF NOT EXISTS clients (
                id INTEGER PRIMARY KEY,
                name TEXT NOT NULL,
                email TEXT UNIQUE,
                age INTEGER,
                income REAL,
                risk_tolerance INTEGER,
                total_investment REAL,
                investment_goals TEXT,
                created_at DATETIME DEFAULT CURRENT_TIMESTAMP
            )
            ''')
            
            # Enhanced portfolios table
            self.cursor.execute('''
            CREATE TABLE IF NOT EXISTS portfolios (
                id INTEGER PRIMARY KEY,
                client_id INTEGER,
                investment_type TEXT,
                asset_symbol TEXT,
                investment_amount REAL,
                purchase_price REAL,
                current_price REAL,
                performance REAL,
                risk_score REAL,
                allocation_percentage REAL,
                last_updated DATETIME DEFAULT CURRENT_TIMESTAMP,
                FOREIGN KEY (client_id) REFERENCES clients (id)
            )
            ''')
            
            # Transactions table with more details
            self.cursor.execute('''
            CREATE TABLE IF NOT EXISTS transactions (
                id INTEGER PRIMARY KEY,
                portfolio_id INTEGER,
                transaction_type TEXT,
                asset_symbol TEXT,
                amount REAL,
                quantity REAL,
                price REAL,
                date DATETIME DEFAULT CURRENT_TIMESTAMP,
                FOREIGN KEY (portfolio_id) REFERENCES portfolios (id)
            )
            ''')
            
            # Performance tracking table
            self.cursor.execute('''
            CREATE TABLE IF NOT EXISTS performance_tracking (
                id INTEGER PRIMARY KEY,
                client_id INTEGER,
                total_investment REAL,
                current_value REAL,
                total_return REAL,
                annual_return REAL,
                last_updated DATETIME DEFAULT CURRENT_TIMESTAMP,
                FOREIGN KEY (client_id) REFERENCES clients (id)
            )
            ''')
            
            self.conn.commit()
        except sqlite3.Error as e:
            print(f"Database initialization error: {e}")
    
    def get_real_time_market_data(self, symbols):
        """
        Fetch real-time market data using Yahoo Finance
        
        Args:
            symbols (list): List of stock/asset symbols
        
        Returns:
            dict: Real-time market data
        """
        market_data = {}
        for symbol in symbols:
            try:
                ticker = yf.Ticker(symbol)
                # Fetch historical data and current info
                hist = ticker.history(period="1mo")
                market_data[symbol] = {
                    'current_price': ticker.info.get('regularMarketPrice', 0),
                    'previous_close': ticker.info.get('previousClose', 0),
                    'volume': ticker.info.get('volume', 0),
                    'market_cap': ticker.info.get('marketCap', 0),
                    'beta': ticker.info.get('beta', 1.0),
                    'volatility': hist['Close'].std() if not hist.empty else 0,
                    'returns_1m': (hist['Close'][-1] / hist['Close'][0] - 1) * 100 if len(hist) > 1 else 0
                }
            except Exception as e:
                print(f"Error fetching data for {symbol}: {e}")
        return market_data
    
    def generate_advanced_training_data(self, n_samples=5000):
        """
        Generate advanced synthetic training data with more features
        
        Returns:
            tuple: Features and target variables
        """
        np.random.seed(42)
        
        # More comprehensive feature generation
        age = np.random.randint(25, 65, n_samples)
        income = np.random.uniform(30000, 1000000, n_samples)
        investment_experience = np.random.randint(0, 30, n_samples)
        current_investments = np.random.uniform(0, 5000000, n_samples)
        
        # Additional features
        education_level = np.random.randint(1, 5, n_samples)  # 1-4 education levels
        family_size = np.random.randint(1, 6, n_samples)
        debt_to_income = np.random.uniform(0, 0.5, n_samples)
        
        # Combine features
        X = np.column_stack([
            age, income, investment_experience, current_investments,
            education_level, family_size, debt_to_income
        ])
        
        # Advanced risk scoring with more nuanced calculation
        y_risk = (
            (income / 50000) + 
            (investment_experience / 10) - 
            (debt_to_income * 10) + 
            (education_level * 0.5) - 
            (current_investments / 500000)
        )
        y_risk = np.clip(y_risk, 1, 10)  # Risk score between 1-10
        
        # Portfolio performance with more complex calculation
        y_portfolio_performance = (
            (income / 25000) + 
            (investment_experience / 5) + 
            (current_investments / 250000) - 
            (debt_to_income * 20)
        )
        y_portfolio_performance = np.clip(y_portfolio_performance, 0, 100)
        
        return X, y_risk, y_portfolio_performance
    
    def train_advanced_models(self):
        """
        Train advanced machine learning models for risk and portfolio prediction
        """
        # Generate training data
        X, y_risk, y_portfolio_performance = self.generate_advanced_training_data()
        
        # Split the data
        X_train, X_test, y_risk_train, y_risk_test, y_perf_train, y_perf_test = train_test_split(
            X, y_risk, y_portfolio_performance, test_size=0.2, random_state=42
        )
        
        # Scale features
        scaler = StandardScaler()
        X_train_scaled = scaler.fit_transform(X_train)
        X_test_scaled = scaler.transform(X_test)
        
        # Risk Prediction Model (Regression)
        risk_model = RandomForestRegressor(n_estimators=200, random_state=42)
        risk_model.fit(X_train_scaled, y_risk_train)
        y_risk_pred = risk_model.predict(X_test_scaled)
        risk_mse = mean_squared_error(y_risk_test, y_risk_pred)
        
        # Portfolio Performance Model (Regression)
        portfolio_model = RandomForestRegressor(n_estimators=200, random_state=42)
        portfolio_model.fit(X_train_scaled, y_perf_train)
        y_perf_pred = portfolio_model.predict(X_test_scaled)
        perf_mse = mean_squared_error(y_perf_test, y_perf_pred)
        
        # Investment Type Recommendation Model (Classification)
        # Create synthetic labels for investment type recommendation
        y_investment_type = np.random.choice(len(self.investment_types), len(X))
        X_type_train, X_type_test, y_type_train, y_type_test = train_test_split(
            X, y_investment_type, test_size=0.2, random_state=42
        )
        X_type_train_scaled = scaler.transform(X_type_train)
        X_type_test_scaled = scaler.transform(X_type_test)
        
        investment_type_model = RandomForestClassifier(n_estimators=200, random_state=42)
        investment_type_model.fit(X_type_train_scaled, y_type_train)
        y_type_pred = investment_type_model.predict(X_type_test_scaled)
        type_accuracy = accuracy_score(y_type_test, y_type_pred)
        
        # Save models and scaler
        joblib.dump({
            'risk_model': risk_model,
            'portfolio_model': portfolio_model,
            'investment_type_model': investment_type_model,
            'scaler': scaler
        }, 'advanced_hedge_fund_models.joblib')
        
        # Print model performance
        print(f"Risk Prediction MSE: {risk_mse}")
        print(f"Portfolio Performance MSE: {perf_mse}")
        print(f"Investment Type Recommendation Accuracy: {type_accuracy}")
        
        return risk_model, portfolio_model, investment_type_model, scaler
    
    def load_or_train_models(self):
        """
        Load existing models or train new predictive models
        """
        try:
            # Try to load pre-trained models
            models = joblib.load('advanced_hedge_fund_models.joblib')
            self.risk_model = models['risk_model']
            self.portfolio_model = models['portfolio_model']
            self.investment_type_model = models['investment_type_model']
            self.scaler = models['scaler']
        except (FileNotFoundError, KeyError):
            # Train new models if not found
            (self.risk_model, 
             self.portfolio_model, 
             self.investment_type_model, 
             self.scaler) = self.train_advanced_models()
    
    def recommend_portfolio_allocation(self, client_features, target_return=0.15):
        """
        Recommend portfolio allocation with 15% target return
        
        Args:
            client_features (numpy.ndarray): Client features
            target_return (float): Target annual return percentage
        
        Returns:
            dict: Recommended portfolio allocation
        """
        # Scale client features
        scaled_features = self.scaler.transform(client_features.reshape(1, -1))
        
        # Predict risk and investment type
        risk_score = float(self.risk_model.predict(scaled_features)[0])
        investment_type_index = int(self.investment_type_model.predict(scaled_features)[0])
        recommended_investment_type = self.investment_types[investment_type_index]
        
        # Fetch real-time market data for market indices
        market_data = self.get_real_time_market_data(self.market_indices)
        
        # Calculate portfolio allocation
        base_allocation = {
            'Stocks': 0.4,
            'Bonds': 0.3,
            'ETFs': 0.15,
            'Real Estate': 0.1,
            'Other Alternatives': 0.05
        }
        
        # Adjust allocation based on risk tolerance
        if risk_score <= 3:  # Conservative
            base_allocation = {
                'Bonds': 0.6,
                'Stocks': 0.2,
                'ETFs': 0.1,
                'Real Estate': 0.05,
                'Other Alternatives': 0.05
            }
        elif risk_score >= 8:  # Aggressive
            base_allocation = {
                'Stocks': 0.5,
                'ETFs': 0.2,
                'Real Estate': 0.1,
                'Cryptocurrencies': 0.1,
                'Other Alternatives': 0.1
            }
        
        # Recommended portfolio details
        portfolio_recommendation = {
            'risk_score': risk_score,
            'recommended_investment_type': recommended_investment_type,
            'allocation': base_allocation,
            'target_return': target_return,
            'market_indices': market_data
        }
        
        return portfolio_recommendation
    
    def analyze_equity_bonds(self, risk_tolerance, investment_amount, investment_timeframe, sector_preference = None):
      """Analyze Equities and Bonds and recommend investments
      Args:
        risk_tolerance: (str) "Low", "Medium", "High"
        investment_amount: (float) total investment amount
        investment_timeframe: (str) "Short term", "Medium term", "Long term"
        sector_preference: (str) for equities, can be "Tech", "Healthcare", "Finance", etc.
      """
      
      # Step 1: Data Retrieval for equities
      equity_data = self.get_real_time_market_data(self.equity_etfs)
      equity_df = pd.DataFrame.from_dict(equity_data, orient='index')
    
      # Step 2: Data Retrieval for bonds
      bond_data = self.get_real_time_market_data(self.bond_etfs)
      bond_df = pd.DataFrame.from_dict(bond_data, orient='index')

      # Additional data retrieval
      for symbol in self.equity_etfs + self.bond_etfs:
        ticker = yf.Ticker(symbol)
        hist = ticker.history(period="1y")
        if not hist.empty:
          returns = hist['Close'].pct_change().dropna() # Daily returns, remove the first NAN value
          equity_df.loc[symbol, 'annual_return'] = returns.mean() * 252 # Annualize returns 
        else:
          equity_df.loc[symbol, 'annual_return'] = 0

      # Equity Analysis
      equity_df['risk_adjusted_return'] = equity_df['annual_return'] / equity_df['volatility'] if equity_df['volatility'].any() > 0 else 0
      if sector_preference:
            # Fetch and match to sector specific ETFs
            sector_etfs_dict = {
                "Technology": ["XLK","VGT"],
                "Healthcare":["XLV","VHT"],
                "Finance": ["XLF", "VFH"]
            }
            sector_etfs = sector_etfs_dict.get(sector_preference, None)
            if sector_etfs:
              sector_data = self.get_real_time_market_data(sector_etfs)
              sector_df = pd.DataFrame.from_dict(sector_data, orient='index')

            # additional data retrieve for sector
              for symbol in sector_etfs:
                  ticker = yf.Ticker(symbol)
                  hist = ticker.history(period="1y")
                  if not hist.empty:
                    returns = hist['Close'].pct_change().dropna() # Daily returns, remove the first NAN value
                    sector_df.loc[symbol, 'annual_return'] = returns.mean() * 252 # Annualize returns 
                  else:
                    sector_df.loc[symbol, 'annual_return'] = 0
              
              sector_df['risk_adjusted_return'] = sector_df['annual_return'] / sector_df['volatility'] if sector_df['volatility'].any() > 0 else 0

              # Concatenate the dataframes of the Sector data with the equity data
              equity_df = pd.concat([equity_df, sector_df])
      # Bond analysis
      bond_df['risk_adjusted_return'] = bond_df['returns_1m'] / bond_df['volatility'] if bond_df['volatility'].any() > 0 else 0
    
      # Step 3: Asset selection based on risk tolerance

      if risk_tolerance == "Low":
        equity_recommendations = equity_df.sort_values(by=['volatility']).head(3).index.tolist()  # Lower vol
        bond_recommendations = bond_df.sort_values(by=['risk_adjusted_return'], ascending=False).head(2).index.tolist() # Higher returns for low risk
      elif risk_tolerance == "Medium":
        equity_recommendations = equity_df.sort_values(by=['risk_adjusted_return'], ascending=False).head(3).index.tolist()
        bond_recommendations = bond_df.sort_values(by=['risk_adjusted_return'], ascending=False).head(2).index.tolist()
      else:  # High Risk
        equity_recommendations = equity_df.sort_values(by=['risk_adjusted_return'], ascending=False).head(3).index.tolist()
        bond_recommendations = bond_df.sort_values(by=['volatility'], ascending=False).head(2).index.tolist() # higher yield, volatile bonds

      # Step 4: Recommended Investment with allocation

      if investment_timeframe == 'Short term':
        allocation = {'Bonds':0.6, 'Equities':0.4}
      elif investment_timeframe == 'Medium term':
        allocation = {'Bonds': 0.4, 'Equities':0.6}
      else: # Long Term
        allocation = {'Bonds':0.3, 'Equities':0.7}

      formatted_output = f"Recommended allocation: Bonds {allocation['Bonds'] * 100:.2f}%, Equities: {allocation['Equities'] * 100:.2f}% \n"
      formatted_output += f"Equity Recommendations: \n"
      for rec in equity_recommendations:
          formatted_output += f" - {rec}\n"
      formatted_output += f"Bond Recommendations: \n"
      for rec in bond_recommendations:
          formatted_output += f" - {rec}\n"

      return formatted_output


    def create_gradio_interface(self):
        """
        Create Gradio interface for the Advanced Hedge Fund Management System
        
        Returns:
            gr.Interface: Gradio web interface
        """
        def analyze_investment_profile(age, income, investment_experience, 
                                       current_investments, education_level, 
                                       family_size, debt_to_income):
            """
            Comprehensive investment profile analysis
            """
            # Prepare client features
            client_features = np.array([
                age, income, investment_experience, current_investments,
                education_level, family_size, debt_to_income
            ])
            
            # Get portfolio recommendation
            recommendation = self.recommend_portfolio_allocation(client_features)
            
            # Format output
            allocation_str = "\n".join([
                f"{k}: {v*100:.2f}%" for k, v in recommendation['allocation'].items()
            ])
            
            output = (
                f"Risk Score: {recommendation['risk_score']:.2f}/10\n"
                f"Recommended Investment Type: {recommendation['recommended_investment_type']}\n"
                f"Target Annual Return: {recommendation['target_return']*100:.2f}%\n\n"
                "Portfolio Allocation:\n" + allocation_str + "\n\n"
                "Market Indices Performance:\n" + 
                "\n".join([
                    f"{symbol}: {data['returns_1m']:.2f}% (1M Return)" 
                    for symbol, data in recommendation['market_indices'].items()
                ])
            )
            
            return output
        
        def analyze_equity_bond_investments(risk_tolerance, investment_amount, investment_timeframe, sector_preference):
            """
             Analyze equity and bond investments based on users preferences
            """

            return self.analyze_equity_bonds(risk_tolerance, investment_amount, investment_timeframe, sector_preference)
        # Gradio interface with more comprehensive inputs
        interface = gr.TabbedInterface(
            [
                gr.Interface(
                    fn=analyze_investment_profile,
                    inputs=[
                        gr.Number(label="Age"),
                        gr.Number(label="Annual Income"),
                        gr.Number(label="Investment Experience (Years)"),
                        gr.Number(label="Current Investments"),
                        gr.Dropdown(label="Education Level", choices=[1, 2, 3, 4]),
                        gr.Number(label="Family Size"),
                        gr.Number(label="Debt-to-Income Ratio")
                    ],
                    outputs=gr.Textbox(label="Investment Profile Analysis"),
                    title="Investment Profile Analysis",
                    description="Get personalized recommendations based on your profile"
                ),
                gr.Interface(
                    fn=analyze_equity_bond_investments,
                    inputs=[
                        gr.Dropdown(label="Risk Tolerance", choices=["Low", "Medium", "High"]),
                        gr.Number(label="Investment Amount"),
                        gr.Dropdown(label="Investment Timeframe", choices=["Short term", "Medium term", "Long term"]),
                        gr.Dropdown(label="Sector Preference", choices = ["Technology","Healthcare", "Finance", None] )
                    ],
                    outputs=gr.Textbox(label="Equity and Bond Analysis"),
                    title="Equity and Bond Analysis",
                    description="Analyze and get recommended Equities and Bonds based on your parameters"
                )
            ],
            tab_names=["Investment Profile","Equity and Bond Analyzer"],
            title="Advanced Hedge Fund Management System",
            # description="Enter your details to get personalized investment recommendations."  # Removed description here
        )
        
        return interface
    
    def run_gradio_app(self):
        """
        Run the Gradio web application
        """
        interface = self.create_gradio_interface()
        interface.launch()

if __name__ == "__main__":
    hedge_fund_system = AdvancedHedgeFundManagementSystem()
    hedge_fund_system.run_gradio_app()