Anupam251272
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
from PIL import Image
|
7 |
+
import torch.nn as nn
|
8 |
+
from pathlib import Path
|
9 |
+
import cv2
|
10 |
+
from torchvision import transforms
|
11 |
+
from efficientnet_pytorch import EfficientNet
|
12 |
+
import logging
|
13 |
+
import warnings
|
14 |
+
from sklearn.preprocessing import StandardScaler
|
15 |
+
from typing import Optional, Dict, Any, Tuple
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
from datetime import datetime
|
19 |
+
import albumentations as A
|
20 |
+
from transformers import MarianMTModel, MarianTokenizer
|
21 |
+
import matplotlib.pyplot as plt
|
22 |
+
import seaborn as sns
|
23 |
+
import smtplib
|
24 |
+
from email.mime.text import MIMEText
|
25 |
+
from email.mime.multipart import MIMEMultipart
|
26 |
+
warnings.filterwarnings('ignore')
|
27 |
+
|
28 |
+
# Set up logging with more detailed configuration
|
29 |
+
logging.basicConfig(
|
30 |
+
level=logging.INFO,
|
31 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
32 |
+
handlers=[
|
33 |
+
logging.FileHandler('skin_diagnostic.log'),
|
34 |
+
logging.StreamHandler()
|
35 |
+
]
|
36 |
+
)
|
37 |
+
logger = logging.getLogger(__name__)
|
38 |
+
|
39 |
+
class ImageValidator:
|
40 |
+
"""Class for image validation and quality checking"""
|
41 |
+
|
42 |
+
@staticmethod
|
43 |
+
def validate_image(image: np.ndarray) -> Tuple[bool, str]:
|
44 |
+
"""
|
45 |
+
Validate image quality and characteristics
|
46 |
+
Returns: (is_valid, message)
|
47 |
+
"""
|
48 |
+
try:
|
49 |
+
# Check image dimensions
|
50 |
+
if image.shape[0] < 224 or image.shape[1] < 224:
|
51 |
+
return False, "Image resolution too low. Minimum 224x224 required."
|
52 |
+
|
53 |
+
# Check if image is too dark or too bright
|
54 |
+
brightness = np.mean(image)
|
55 |
+
if brightness < 30:
|
56 |
+
return False, "Image too dark. Please capture in better lighting."
|
57 |
+
if brightness > 240:
|
58 |
+
return False, "Image too bright. Please reduce exposure."
|
59 |
+
|
60 |
+
# Check for blur
|
61 |
+
laplacian_var = cv2.Laplacian(cv2.cvtColor(image, cv2.COLOR_RGB2GRAY), cv2.CV_64F).var()
|
62 |
+
if laplacian_var < 100:
|
63 |
+
return False, "Image is too blurry. Please provide a clearer image."
|
64 |
+
|
65 |
+
# Check for color consistency
|
66 |
+
color_std = np.std(image, axis=(0,1))
|
67 |
+
if np.mean(color_std) < 20:
|
68 |
+
return False, "Image lacks color variation. Please ensure proper lighting."
|
69 |
+
|
70 |
+
return True, "Image validation successful"
|
71 |
+
|
72 |
+
except Exception as e:
|
73 |
+
logger.error(f"Image validation error: {str(e)}")
|
74 |
+
return False, "Error during image validation"
|
75 |
+
|
76 |
+
class AdvancedImageAnalysis:
|
77 |
+
"""Class for sophisticated image analysis techniques"""
|
78 |
+
|
79 |
+
def __init__(self):
|
80 |
+
self.scaler = StandardScaler()
|
81 |
+
|
82 |
+
def analyze_lesion(self, image: np.ndarray) -> Dict[str, float]:
|
83 |
+
"""
|
84 |
+
Perform advanced analysis of skin lesion characteristics
|
85 |
+
"""
|
86 |
+
try:
|
87 |
+
# Convert to different color spaces
|
88 |
+
hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
|
89 |
+
lab = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)
|
90 |
+
|
91 |
+
# Extract features
|
92 |
+
features = {
|
93 |
+
'asymmetry': self._calculate_asymmetry(image),
|
94 |
+
'border_irregularity': self._analyze_border(image),
|
95 |
+
'color_variation': self._analyze_color(hsv),
|
96 |
+
'diameter': self._estimate_diameter(image),
|
97 |
+
'texture': self._analyze_texture(lab),
|
98 |
+
'vascularity': self._analyze_vascularity(image),
|
99 |
+
}
|
100 |
+
|
101 |
+
return features
|
102 |
+
|
103 |
+
except Exception as e:
|
104 |
+
logger.error(f"Error in lesion analysis: {str(e)}")
|
105 |
+
return {}
|
106 |
+
|
107 |
+
def _calculate_asymmetry(self, image: np.ndarray) -> float:
|
108 |
+
"""Calculate asymmetry score of the lesion"""
|
109 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
110 |
+
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
111 |
+
|
112 |
+
# Find contours
|
113 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
114 |
+
if not contours:
|
115 |
+
return 0.0
|
116 |
+
|
117 |
+
# Get largest contour
|
118 |
+
largest_contour = max(contours, key=cv2.contourArea)
|
119 |
+
|
120 |
+
# Calculate moments
|
121 |
+
moments = cv2.moments(largest_contour)
|
122 |
+
if moments['m00'] == 0:
|
123 |
+
return 0.0
|
124 |
+
|
125 |
+
# Calculate center of mass
|
126 |
+
cx = moments['m10'] / moments['m00']
|
127 |
+
cy = moments['m01'] / moments['m00']
|
128 |
+
|
129 |
+
return float(cv2.matchShapes(largest_contour, cv2.flip(largest_contour, 1), 1, 0.0))
|
130 |
+
|
131 |
+
def _analyze_border(self, image: np.ndarray) -> float:
|
132 |
+
"""Analyze border irregularity"""
|
133 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
134 |
+
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
135 |
+
|
136 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
137 |
+
if not contours:
|
138 |
+
return 0.0
|
139 |
+
|
140 |
+
largest_contour = max(contours, key=cv2.contourArea)
|
141 |
+
perimeter = cv2.arcLength(largest_contour, True)
|
142 |
+
area = cv2.contourArea(largest_contour)
|
143 |
+
|
144 |
+
if area == 0:
|
145 |
+
return 0.0
|
146 |
+
|
147 |
+
circularity = 4 * np.pi * area / (perimeter * perimeter)
|
148 |
+
return 1 - circularity
|
149 |
+
|
150 |
+
def _analyze_color(self, hsv: np.ndarray) -> float:
|
151 |
+
"""Analyze color variation in the lesion"""
|
152 |
+
return float(np.std(hsv[:,:,0]))
|
153 |
+
|
154 |
+
def _estimate_diameter(self, image: np.ndarray) -> float:
|
155 |
+
"""Estimate lesion diameter"""
|
156 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
157 |
+
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
|
158 |
+
|
159 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
160 |
+
if not contours:
|
161 |
+
return 0.0
|
162 |
+
|
163 |
+
largest_contour = max(contours, key=cv2.contourArea)
|
164 |
+
_, _, w, h = cv2.boundingRect(largest_contour)
|
165 |
+
return max(w, h)
|
166 |
+
|
167 |
+
def _analyze_texture(self, lab: np.ndarray) -> float:
|
168 |
+
"""Analyze texture patterns"""
|
169 |
+
gray = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)
|
170 |
+
gray = cv2.cvtColor(gray, cv2.COLOR_BGR2GRAY)
|
171 |
+
|
172 |
+
# Calculate GLCM features
|
173 |
+
glcm = cv2.calcHist([gray], [0], None, [16], [0,256])
|
174 |
+
glcm = glcm.flatten() / glcm.sum()
|
175 |
+
|
176 |
+
# Calculate entropy
|
177 |
+
entropy = -np.sum(glcm * np.log2(glcm + 1e-7))
|
178 |
+
return float(entropy)
|
179 |
+
|
180 |
+
def _analyze_vascularity(self, image: np.ndarray) -> float:
|
181 |
+
"""Analyze vascular patterns"""
|
182 |
+
# Extract red channel
|
183 |
+
red_channel = image[:,:,0]
|
184 |
+
return float(np.percentile(red_channel, 95) - np.percentile(red_channel, 5))
|
185 |
+
|
186 |
+
class SkinDiagnosticSystem:
|
187 |
+
def __init__(self, model_path: Optional[str] = None):
|
188 |
+
# Define classes and risk levels
|
189 |
+
self.classes = [
|
190 |
+
'Melanocytic nevi',
|
191 |
+
'Melanoma',
|
192 |
+
'Benign keratosis-like lesions',
|
193 |
+
'Basal cell carcinoma',
|
194 |
+
'Actinic keratoses',
|
195 |
+
'Vascular lesions',
|
196 |
+
'Dermatofibroma'
|
197 |
+
]
|
198 |
+
|
199 |
+
self.risk_levels = {
|
200 |
+
'Melanoma': 'High',
|
201 |
+
'Basal cell carcinoma': 'High',
|
202 |
+
'Actinic keratoses': 'Moderate',
|
203 |
+
'Vascular lesions': 'Low to Moderate',
|
204 |
+
'Benign keratosis-like lesions': 'Low',
|
205 |
+
'Melanocytic nevi': 'Low',
|
206 |
+
'Dermatofibroma': 'Low'
|
207 |
+
}
|
208 |
+
|
209 |
+
# Initialize components
|
210 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
211 |
+
self.image_validator = ImageValidator()
|
212 |
+
self.image_analyzer = AdvancedImageAnalysis()
|
213 |
+
|
214 |
+
# Load model
|
215 |
+
self.model = self._load_model(model_path)
|
216 |
+
self.transform = self._get_transforms()
|
217 |
+
|
218 |
+
# Load medical context
|
219 |
+
self.medical_context = self._load_medical_context()
|
220 |
+
|
221 |
+
def _load_model(self, model_path: Optional[str]) -> nn.Module:
|
222 |
+
"""Load model with checkpointing support"""
|
223 |
+
try:
|
224 |
+
model = EfficientNet.from_pretrained('efficientnet-b4')
|
225 |
+
num_ftrs = model._fc.in_features
|
226 |
+
model._fc = nn.Sequential(
|
227 |
+
nn.Linear(num_ftrs, 512),
|
228 |
+
nn.ReLU(),
|
229 |
+
nn.Dropout(0.2),
|
230 |
+
nn.Linear(512, len(self.classes))
|
231 |
+
)
|
232 |
+
|
233 |
+
if model_path and os.path.exists(model_path):
|
234 |
+
logger.info(f"Loading model checkpoint from {model_path}")
|
235 |
+
checkpoint = torch.load(model_path, map_location=self.device)
|
236 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
237 |
+
logger.info(f"Model checkpoint loaded. Epoch: {checkpoint['epoch']}")
|
238 |
+
|
239 |
+
model = model.to(self.device)
|
240 |
+
model.eval()
|
241 |
+
return model
|
242 |
+
|
243 |
+
except Exception as e:
|
244 |
+
logger.error(f"Error loading model: {str(e)}")
|
245 |
+
raise
|
246 |
+
|
247 |
+
def _get_transforms(self) -> transforms.Compose:
|
248 |
+
"""Get image transformations"""
|
249 |
+
return transforms.Compose([
|
250 |
+
transforms.Resize((224, 224)),
|
251 |
+
transforms.ToTensor(),
|
252 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
253 |
+
std=[0.229, 0.224, 0.225])
|
254 |
+
])
|
255 |
+
|
256 |
+
def _load_medical_context(self) -> Dict[str, Any]:
|
257 |
+
"""Load medical context and warnings"""
|
258 |
+
return {
|
259 |
+
'Melanoma': {
|
260 |
+
'description': 'A serious form of skin cancer that begins in melanocytes.',
|
261 |
+
'warning': 'URGENT: Immediate medical attention required. This is a potentially serious condition.',
|
262 |
+
'risk_factors': [
|
263 |
+
'UV exposure',
|
264 |
+
'Fair skin',
|
265 |
+
'Family history',
|
266 |
+
'Multiple moles'
|
267 |
+
],
|
268 |
+
'follow_up': 'Immediate dermatologist consultation required'
|
269 |
+
},
|
270 |
+
'Basal cell carcinoma': {
|
271 |
+
'description': 'The most common type of skin cancer.',
|
272 |
+
'warning': 'Medical attention required. While typically slow-growing, treatment is necessary.',
|
273 |
+
'risk_factors': [
|
274 |
+
'Sun exposure',
|
275 |
+
'Fair skin',
|
276 |
+
'Age over 50',
|
277 |
+
'Prior radiation therapy'
|
278 |
+
],
|
279 |
+
'follow_up': 'Schedule dermatologist appointment within 1-2 weeks'
|
280 |
+
},
|
281 |
+
# Add entries for other conditions...
|
282 |
+
}
|
283 |
+
|
284 |
+
def save_checkpoint(self, epoch: int, optimizer: torch.optim.Optimizer, loss: float) -> None:
|
285 |
+
"""Save model checkpoint"""
|
286 |
+
checkpoint_dir = Path('checkpoints')
|
287 |
+
checkpoint_dir.mkdir(exist_ok=True)
|
288 |
+
|
289 |
+
checkpoint_path = checkpoint_dir / f'model_checkpoint_epoch_{epoch}.pth'
|
290 |
+
torch.save({
|
291 |
+
'epoch': epoch,
|
292 |
+
'model_state_dict': self.model.state_dict(),
|
293 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
294 |
+
'loss': loss,
|
295 |
+
}, checkpoint_path)
|
296 |
+
|
297 |
+
logger.info(f"Checkpoint saved: {checkpoint_path}")
|
298 |
+
|
299 |
+
def analyze_image(self, image: np.ndarray) -> Dict[str, Any]:
|
300 |
+
"""Main analysis function with validation and advanced analysis"""
|
301 |
+
try:
|
302 |
+
# Validate image
|
303 |
+
is_valid, validation_message = self.image_validator.validate_image(image)
|
304 |
+
if not is_valid:
|
305 |
+
return {'error': validation_message}
|
306 |
+
|
307 |
+
# Convert to PIL Image
|
308 |
+
pil_image = Image.fromarray(image)
|
309 |
+
|
310 |
+
# Prepare image for model
|
311 |
+
img_tensor = self.transform(pil_image).unsqueeze(0).to(self.device)
|
312 |
+
|
313 |
+
# Get model predictions
|
314 |
+
with torch.no_grad():
|
315 |
+
outputs = self.model(img_tensor)
|
316 |
+
probs = torch.nn.functional.softmax(outputs, dim=1)
|
317 |
+
|
318 |
+
# Get predicted class and probability
|
319 |
+
pred_prob, pred_idx = torch.max(probs, 1)
|
320 |
+
condition = self.classes[pred_idx]
|
321 |
+
confidence = pred_prob.item() * 100
|
322 |
+
|
323 |
+
# Perform advanced image analysis
|
324 |
+
analysis_results = self.image_analyzer.analyze_lesion(image)
|
325 |
+
|
326 |
+
# Get medical context
|
327 |
+
medical_info = self.medical_context.get(condition, {})
|
328 |
+
|
329 |
+
# Prepare response
|
330 |
+
response = {
|
331 |
+
'condition': condition,
|
332 |
+
'confidence': confidence,
|
333 |
+
'risk_level': self.risk_levels.get(condition, 'Unknown'),
|
334 |
+
'analysis': analysis_results,
|
335 |
+
'medical_context': medical_info,
|
336 |
+
'warning': medical_info.get('warning', ''),
|
337 |
+
'timestamp': datetime.now().isoformat()
|
338 |
+
}
|
339 |
+
|
340 |
+
# Log analysis results
|
341 |
+
logger.info(f"Analysis completed for condition: {condition} (confidence: {confidence:.2f}%)")
|
342 |
+
|
343 |
+
return response
|
344 |
+
|
345 |
+
except Exception as e:
|
346 |
+
logger.error(f"Error in image analysis: {str(e)}")
|
347 |
+
return {'error': 'Analysis failed. Please try again.'}
|
348 |
+
|
349 |
+
def create_gradio_interface():
|
350 |
+
system = SkinDiagnosticSystem()
|
351 |
+
|
352 |
+
# Load translation models
|
353 |
+
translation_models = {
|
354 |
+
'hi': ('Helsinki-NLP/opus-mt-en-hi', MarianTokenizer, MarianMTModel),
|
355 |
+
'ta': ('Helsinki-NLP/opus-mt-en-ta', MarianTokenizer, MarianMTModel),
|
356 |
+
'te': ('Helsinki-NLP/opus-mt-en-te', MarianTokenizer, MarianMTModel),
|
357 |
+
'bn': ('Helsinki-NLP/opus-mt-en-bn', MarianTokenizer, MarianMTModel),
|
358 |
+
'mr': ('Helsinki-NLP/opus-mt-en-mr', MarianTokenizer, MarianMTModel),
|
359 |
+
'pa': ('Helsinki-NLP/opus-mt-en-pa', MarianTokenizer, MarianMTModel),
|
360 |
+
'gu': ('Helsinki-NLP/opus-mt-en-gu', MarianTokenizer, MarianMTModel),
|
361 |
+
'kn': ('Helsinki-NLP/opus-mt-en-kn', MarianTokenizer, MarianMTModel),
|
362 |
+
'ml': ('Helsinki-NLP/opus-mt-en-ml', MarianTokenizer, MarianMTModel),
|
363 |
+
}
|
364 |
+
|
365 |
+
def process_image(image, language, email=None):
|
366 |
+
result = system.analyze_image(image)
|
367 |
+
|
368 |
+
if 'error' in result:
|
369 |
+
return f"Error: {result['error']}"
|
370 |
+
|
371 |
+
# Format detailed output
|
372 |
+
output = "ANALYSIS RESULTS\n" + "="*50 + "\n\n"
|
373 |
+
|
374 |
+
# Condition and Risk Level
|
375 |
+
output += f"Detected Condition: {result['condition']}\n"
|
376 |
+
output += f"Confidence: {result['confidence']:.2f}%\n"
|
377 |
+
output += f"Risk Level: {result['risk_level']}\n\n"
|
378 |
+
|
379 |
+
# Warning (if any)
|
380 |
+
if result['warning']:
|
381 |
+
output += f"⚠️ WARNING ⚠️\n{result['warning']}\n\n"
|
382 |
+
|
383 |
+
# Detailed Analysis
|
384 |
+
output += "Detailed Analysis:\n" + "-"*20 + "\n"
|
385 |
+
for metric, value in result['analysis'].items():
|
386 |
+
output += f"{metric}: {value:.2f}\n"
|
387 |
+
|
388 |
+
# Medical Context
|
389 |
+
if 'medical_context' in result and result['medical_context']:
|
390 |
+
output += "\nMedical Context:\n" + "-"*20 + "\n"
|
391 |
+
context = result['medical_context']
|
392 |
+
output += f"Description: {context.get('description', 'N/A')}\n"
|
393 |
+
|
394 |
+
if 'risk_factors' in context:
|
395 |
+
output += "\nRisk Factors:\n"
|
396 |
+
for factor in context['risk_factors']:
|
397 |
+
output += f"- {factor}\n"
|
398 |
+
|
399 |
+
if 'follow_up' in context:
|
400 |
+
output += f"\nRecommended Follow-up:\n{context['follow_up']}\n"
|
401 |
+
|
402 |
+
# Timestamp
|
403 |
+
output += f"\nAnalysis Timestamp: {result['timestamp']}\n"
|
404 |
+
|
405 |
+
# Disclaimer
|
406 |
+
output += "\n" + "="*50 + "\n"
|
407 |
+
output += "DISCLAIMER: This analysis is for informational purposes only and should not replace professional medical advice. Please consult a qualified healthcare provider for proper diagnosis and treatment."
|
408 |
+
|
409 |
+
# Translate output to the selected language
|
410 |
+
if language != 'en':
|
411 |
+
model_name, tokenizer_class, model_class = translation_models[language]
|
412 |
+
tokenizer = tokenizer_class.from_pretrained(model_name)
|
413 |
+
model = model_class.from_pretrained(model_name)
|
414 |
+
inputs = tokenizer(output, return_tensors="pt", padding=True, truncation=True)
|
415 |
+
translated = model.generate(**inputs)
|
416 |
+
translated_output = tokenizer.decode(translated[0], skip_special_tokens=True)
|
417 |
+
else:
|
418 |
+
translated_output = output
|
419 |
+
|
420 |
+
# Send email if provided
|
421 |
+
if email:
|
422 |
+
send_email(email, translated_output)
|
423 |
+
|
424 |
+
return translated_output
|
425 |
+
|
426 |
+
def send_email(to_email, message):
|
427 |
+
from_email = "your_email@example.com"
|
428 |
+
password = "your_password"
|
429 |
+
|
430 |
+
msg = MIMEMultipart()
|
431 |
+
msg['From'] = from_email
|
432 |
+
msg['To'] = to_email
|
433 |
+
msg['Subject'] = "Skin Lesion Analysis Results"
|
434 |
+
|
435 |
+
msg.attach(MIMEText(message, 'plain'))
|
436 |
+
|
437 |
+
server = smtplib.SMTP('smtp.example.com', 587)
|
438 |
+
server.starttls()
|
439 |
+
server.login(from_email, password)
|
440 |
+
server.sendmail(from_email, to_email, msg.as_string())
|
441 |
+
server.quit()
|
442 |
+
|
443 |
+
# Create enhanced Gradio interface with additional features
|
444 |
+
iface = gr.Interface(
|
445 |
+
fn=process_image,
|
446 |
+
inputs=[
|
447 |
+
gr.Image(type="numpy", label="Upload Skin Image"),
|
448 |
+
gr.Dropdown(choices=["en", "hi", "ta", "te", "bn", "mr", "pa", "gu", "kn", "ml"], label="Select Language"),
|
449 |
+
gr.Textbox(label="Email (optional)", placeholder="Enter your email to receive results")
|
450 |
+
],
|
451 |
+
outputs=[
|
452 |
+
gr.Textbox(label="Analysis Results", lines=20)
|
453 |
+
],
|
454 |
+
title="Advanced Skin Lesion Analysis System",
|
455 |
+
description="""
|
456 |
+
This system analyzes skin lesions using advanced computer vision and deep learning techniques.
|
457 |
+
|
458 |
+
Key Features:
|
459 |
+
- Lesion classification based on the HAM10000 dataset
|
460 |
+
- Advanced image quality validation
|
461 |
+
- Detailed analysis of lesion characteristics
|
462 |
+
- Medical context and risk assessment
|
463 |
+
- Option to receive results via email
|
464 |
+
|
465 |
+
Important: This tool is for educational purposes only and should not replace professional medical diagnosis.
|
466 |
+
""",
|
467 |
+
examples=[
|
468 |
+
["example_melanoma.jpg", "en", ""],
|
469 |
+
["example_nevus.jpg", "hi", ""],
|
470 |
+
["example_bcc.jpg", "ta", ""]
|
471 |
+
],
|
472 |
+
analytics_enabled=False,
|
473 |
+
)
|
474 |
+
|
475 |
+
return iface
|
476 |
+
|
477 |
+
iface = create_gradio_interface()
|
478 |
+
iface.launch(
|
479 |
+
server_name="0.0.0.0",
|
480 |
+
server_port=7860,
|
481 |
+
share=True,
|
482 |
+
)
|