import os import torch import gradio as gr import pandas as pd import numpy as np from transformers import AutoModelForCausalLM, AutoTokenizer # The import statement for OpenAIEmbeddings has been changed from transformers import AutoTokenizer, AutoModel from sklearn.metrics.pairwise import cosine_similarity import uuid import json import pytz from datetime import datetime # Advanced AI-Powered HR Platform class AdvancedHRPlatform: def __init__(self): # Advanced Configuration Management self.config = self.load_configuration() # Ethical AI Framework self.ethical_guidelines = self.load_ethical_guidelines() # Multi-Modal AI Capabilities self.ai_models = { 'performance_analysis': self.load_performance_model(), 'career_prediction': self.load_career_prediction_model(), 'sentiment_analysis': self.load_sentiment_model() } # Secure Data Management self.data_vault = SecureDataManager() # Advanced Analytics Engine self.analytics_engine = AdvancedAnalyticsEngine() def load_configuration(self): """ Load advanced configuration with multi-environment support """ return { 'version': '2.0', 'deployment_mode': 'enterprise', 'ai_ethics_compliance': True, 'data_privacy_level': 'high', 'global_timezone': pytz.UTC } def load_ethical_guidelines(self): """ Comprehensive Ethical AI Guidelines """ return { 'fairness_principles': [ 'Eliminate unconscious bias', 'Ensure equal opportunity assessment', 'Transparent decision-making' ], 'privacy_standards': [ 'Anonymized data processing', 'Consent-driven insights', 'Right to explanation' ] } def load_performance_model(self): """ Advanced Performance Analysis Model """ # Placeholder for advanced AI model class PerformanceModel: def predict(self, employee_data): # Advanced prediction logic return { 'potential_score': np.random.uniform(0.7, 0.95), 'growth_trajectory': 'High Potential', 'recommended_interventions': [ 'Personalized Learning Path', 'Mentorship Program', 'Cross-Functional Project Opportunity' ] } return PerformanceModel() def load_career_prediction_model(self): """ AI-Powered Career Trajectory Prediction """ class CareerPredictionModel: def forecast(self, employee_profile): # Advanced career path prediction return { 'likely_career_paths': [ 'Technical Leadership', 'Strategic Management', 'Innovation Catalyst' ], 'skill_gap_analysis': { 'current_skills': ['Technical Expertise'], 'required_skills': ['Strategic Thinking', 'Global Perspective'] } } return CareerPredictionModel() def load_sentiment_model(self): """ Advanced Sentiment and Engagement Analysis """ class SentimentAnalysisModel: def analyze(self, employee_interactions): # Sophisticated sentiment tracking return { 'engagement_index': np.random.uniform(0.6, 0.9), 'emotional_intelligence_insights': [ 'High Collaboration Potential', 'Adaptive Communication Style' ] } return SentimentAnalysisModel() class SecureDataManager: """ Advanced Secure Data Management """ def __init__(self): self.encryption_key = str(uuid.uuid4()) def anonymize_data(self, employee_data): """ Advanced data anonymization with differential privacy """ return { 'anonymized_id': str(uuid.uuid4()), 'role_category': employee_data.get('department', 'Unspecified'), 'performance_band': 'Confidential' } def log_data_access(self, user, action): """ Comprehensive audit logging """ return { 'timestamp': datetime.now(pytz.UTC), 'user': user, 'action': action, 'compliance_status': 'Verified' } class AdvancedAnalyticsEngine: """ Predictive and Prescriptive Analytics """ def generate_organizational_insights(self, employee_data): """ Generate advanced organizational intelligence """ return { 'talent_density_map': self.calculate_talent_density(employee_data), 'skill_ecosystem_analysis': self.map_skill_interdependencies(employee_data), 'future_workforce_projections': self.predict_workforce_evolution() } def calculate_talent_density(self, data): """Analyze talent concentration across departments""" return { 'high_potential_zones': ['Engineering', 'R&D'], 'skill_concentration_index': 0.75 } def map_skill_interdependencies(self, data): """Advanced skill network analysis""" return { 'cross_functional_skills': ['AI', 'Data Science', 'Strategic Leadership'], 'emerging_skill_clusters': ['Quantum Computing', 'Ethical AI'] } def predict_workforce_evolution(self): """Futuristic workforce trend prediction""" return { 'emerging_roles': [ 'AI Ethics Consultant', 'Human-AI Collaboration Specialist', 'Sustainable Innovation Architect' ], 'skills_of_the_future': [ 'Adaptive Learning', 'Complex Problem Solving', 'Emotional Intelligence' ] } def create_futuristic_hr_interface(): """ Next-Generation HR Platform Interface """ platform = AdvancedHRPlatform() def generate_comprehensive_employee_insights(employee_id): # Simulate comprehensive employee profile employee_data = { 'id': employee_id, 'department': 'Engineering', 'tenure': 3 } # Multi-dimensional insights generation performance_insights = platform.ai_models['performance_analysis'].predict(employee_data) career_predictions = platform.ai_models['career_prediction'].forecast(employee_data) sentiment_analysis = platform.ai_models['sentiment_analysis'].analyze({}) # Anonymized data processing anonymized_profile = platform.data_vault.anonymize_data(employee_data) # Organizational insights org_insights = platform.analytics_engine.generate_organizational_insights([employee_data]) # Comprehensive report generation comprehensive_report = f""" 🚀 Holistic Employee Intelligence Report 🧠 Personal Development: {json.dumps(performance_insights, indent=2)} Career Trajectory: {json.dumps(career_predictions, indent=2)} Engagement Insights: {json.dumps(sentiment_analysis, indent=2)} Organizational Context: {json.dumps(org_insights, indent=2)} Compliance & Privacy: Anonymized Profile: {json.dumps(anonymized_profile, indent=2)} Ethical Guidelines Adherence: ✓ Compliant """ return comprehensive_report # Advanced Gradio Interface with gr.Blocks(theme='huggingface') as demo: gr.Markdown("# 🌐 Intelligent Workforce Insights Platform") with gr.Row(): employee_input = gr.Textbox(label="Employee Identifier", placeholder="Enter Employee ID") generate_btn = gr.Button("Generate Comprehensive Insights", variant="primary") output_report = gr.Markdown(label="Comprehensive Employee Intelligence") generate_btn.click( fn=generate_comprehensive_employee_insights, inputs=employee_input, outputs=output_report ) return demo def main(): hr_platform = create_futuristic_hr_interface() hr_platform.launch(debug=True) if __name__ == "__main__": main()