Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +70 -0
- chat_ai.py +102 -0
- constants.py +55 -0
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import json
|
3 |
+
|
4 |
+
from chat_ai import generate_response_for_pre_indexed_repo, generate_response_for_custom_repo
|
5 |
+
|
6 |
+
st.set_page_config(page_title="Tune AI Git Issue Chat")
|
7 |
+
|
8 |
+
if 'clicked' not in st.session_state:
|
9 |
+
st.session_state.clicked = False
|
10 |
+
|
11 |
+
|
12 |
+
def click_button():
|
13 |
+
st.session_state.clicked = True
|
14 |
+
|
15 |
+
|
16 |
+
with st.sidebar:
|
17 |
+
option = st.selectbox(
|
18 |
+
'What repo you are looking for?',
|
19 |
+
('Pre-Indexed', 'Custom'),
|
20 |
+
index=None,
|
21 |
+
placeholder="please choose an option"
|
22 |
+
)
|
23 |
+
if option == 'Pre-Indexed':
|
24 |
+
option_of_repo = st.selectbox(
|
25 |
+
'Choose any one of the pre-index repo',
|
26 |
+
('Tensorflow', 'Pytorch'),
|
27 |
+
index=None,
|
28 |
+
placeholder="please choose an option"
|
29 |
+
)
|
30 |
+
st.write("Select number of top issues you are looking for!")
|
31 |
+
number_of_issues = st.number_input('Insert a number')
|
32 |
+
elif option == 'Custom':
|
33 |
+
repo_link = st.text_area("Please enter your public repo link!")
|
34 |
+
st.write("Select number of top issues you are looking for!")
|
35 |
+
number_of_issues = st.number_input('Insert a number')
|
36 |
+
|
37 |
+
st.button("Ask Tune AI!", on_click=click_button)
|
38 |
+
|
39 |
+
if st.session_state.clicked:
|
40 |
+
with st.spinner("Generating, It may take some minutes🫡..."):
|
41 |
+
if option == 'Pre-Indexed' and number_of_issues:
|
42 |
+
if option_of_repo == "Tensorflow":
|
43 |
+
repo_choice = "Tensorflow"
|
44 |
+
elif option_of_repo == "Pytorch":
|
45 |
+
repo_choice = "Pytorch"
|
46 |
+
gpt_response = generate_response_for_pre_indexed_repo(repo_choice, number_of_issues)
|
47 |
+
if gpt_response["success"]:
|
48 |
+
try:
|
49 |
+
json_data = json.loads(gpt_response["data"])
|
50 |
+
for issue in json_data['issues']:
|
51 |
+
st.markdown(f"**{issue['issue_title']}**", unsafe_allow_html=True)
|
52 |
+
st.write("Rating:", issue['rating']['type'])
|
53 |
+
st.write("Description:", issue['rating']['description'])
|
54 |
+
except:
|
55 |
+
st.json(gpt_response["data"])
|
56 |
+
else:
|
57 |
+
st.write("Sorry we encountered some issues!")
|
58 |
+
elif option == 'Custom' and number_of_issues and repo_link:
|
59 |
+
gpt_response = generate_response_for_custom_repo(number_of_issues, repo_link)
|
60 |
+
if gpt_response["success"]:
|
61 |
+
try:
|
62 |
+
json_data = json.loads(gpt_response["data"])
|
63 |
+
for issue in json_data['issues']:
|
64 |
+
st.markdown(f"**{issue['issue_title']}**", unsafe_allow_html=True)
|
65 |
+
st.write("Rating:", issue['rating']['type'])
|
66 |
+
st.write("Description:", issue['rating']['description'])
|
67 |
+
except:
|
68 |
+
st.json(gpt_response["data"])
|
69 |
+
else:
|
70 |
+
st.write("Sorry we encountered some issues!")
|
chat_ai.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import pandas as pd
|
4 |
+
from constants import JSON_SCHEMA_FOR_GPT, REPO_NAME_EXTRACTION_PATTERN
|
5 |
+
from utils import create_open_ai_query, get_issues_csv, convert_repo_url_to_git_api_url
|
6 |
+
|
7 |
+
|
8 |
+
def generate_response_for_pre_indexed_repo(repo_choice, number_of_issues):
|
9 |
+
if repo_choice == "Tensorflow":
|
10 |
+
csv_key = "tf.csv"
|
11 |
+
repo_name = "Tensorflow"
|
12 |
+
else:
|
13 |
+
csv_key = "torch.csv"
|
14 |
+
repo_name = "Pytorch"
|
15 |
+
issues_df = pd.read_csv(csv_key)
|
16 |
+
context_of_issues = ""
|
17 |
+
for i, row in issues_df.iterrows():
|
18 |
+
issue_title = row["Issue Title"]
|
19 |
+
issue_description = row["Description"]
|
20 |
+
issue_creation_date = row["Created At"]
|
21 |
+
issue_comments = row["Comments"]
|
22 |
+
|
23 |
+
formulated_issue = f"""
|
24 |
+
Issue_title : {issue_title},
|
25 |
+
Issue_description : {issue_description},
|
26 |
+
Issue_creation_date: {issue_creation_date},
|
27 |
+
Issue_comments: {issue_comments}
|
28 |
+
|
29 |
+
"""
|
30 |
+
context_of_issues += formulated_issue
|
31 |
+
schema_context = f"""Output JSON format : {JSON_SCHEMA_FOR_GPT}"""
|
32 |
+
additional_prompt = f"""You have to provide top {number_of_issues}"""
|
33 |
+
prompt = f"""Act as a Software Developer, you are provided with Github Issues details: {context_of_issues} for
|
34 |
+
github repo of {repo_name}. User has asked you to list top {number_of_issues} issues for this repository.
|
35 |
+
Let's break down your task of listing top issues step by step:
|
36 |
+
1. First take time to think and understand the github repo.
|
37 |
+
2. Take time to think and understand the Github Issues details provided. Understand the title, description,
|
38 |
+
number of comments.
|
39 |
+
3. Try to understand what impact each issue will have on the repository if it is resolved.
|
40 |
+
4. Understand why the issues which are highly commented with aspect of its impact on github repo
|
41 |
+
5. calculate rating for issues and select top {number_of_issues} issues.
|
42 |
+
5. Finally provide a JSON response which will have selected top {number_of_issues} issues.
|
43 |
+
Follow the mentioned format for the JSON.
|
44 |
+
"""
|
45 |
+
final_prompt = (schema_context + additional_prompt + prompt)
|
46 |
+
response = create_open_ai_query(final_prompt)
|
47 |
+
if response["success"]:
|
48 |
+
return {"success": True, "data": response["data"]}
|
49 |
+
else:
|
50 |
+
return {"success": False, "error": response}
|
51 |
+
|
52 |
+
|
53 |
+
def generate_response_for_custom_repo(number_of_issues, repo_url):
|
54 |
+
converted_url = convert_repo_url_to_git_api_url(repo_url)
|
55 |
+
print(converted_url)
|
56 |
+
match = re.match(REPO_NAME_EXTRACTION_PATTERN, repo_url)
|
57 |
+
print(match)
|
58 |
+
if match:
|
59 |
+
repo_name = match.group(2)
|
60 |
+
csv_file_name = f"{repo_name}.csv"
|
61 |
+
else:
|
62 |
+
repo_name = repo_url
|
63 |
+
csv_file_name = "test.csv"
|
64 |
+
issues_csv = get_issues_csv(converted_url, csv_file_name)
|
65 |
+
if issues_csv["success"]:
|
66 |
+
issues_df = pd.read_csv(csv_file_name)
|
67 |
+
context_of_issues = ""
|
68 |
+
for i, row in issues_df.iterrows():
|
69 |
+
issue_title = row["Issue Title"]
|
70 |
+
issue_description = row["Description"]
|
71 |
+
issue_creation_date = row["Created At"]
|
72 |
+
issue_comments = row["Comments"]
|
73 |
+
formulated_issue = f"""
|
74 |
+
Issue_title : {issue_title},
|
75 |
+
Issue_description : {issue_description},
|
76 |
+
Issue_creation_date: {issue_creation_date},
|
77 |
+
Issue_comments: {issue_comments}
|
78 |
+
"""
|
79 |
+
context_of_issues += formulated_issue
|
80 |
+
schema_context = f"""Output JSON format : {JSON_SCHEMA_FOR_GPT}"""
|
81 |
+
additional_prompt = f"""You have to provide top {number_of_issues}"""
|
82 |
+
prompt = f"""Act as a Software Developer, you are provided with Github Issues details: {context_of_issues} for
|
83 |
+
github repo of {repo_name}. User has asked you to list top {number_of_issues} issues for this repository.
|
84 |
+
Let's break down your task of listing top issues step by step:
|
85 |
+
1. First take time to think and understand the github repo.
|
86 |
+
2. Take time to think and understand the Github Issues details provided. Understand the title, description,
|
87 |
+
number of comments.
|
88 |
+
3. Try to understand what impact each issue will have on the repository if it is resolved.
|
89 |
+
4. Understand why the issues which are highly commented with aspect of its impact on github repo
|
90 |
+
5. calculate rating for issues and select top {number_of_issues} issues.
|
91 |
+
5. Finally provide a JSON response which will have selected top {number_of_issues} issues.
|
92 |
+
Follow the mentioned format for the JSON.
|
93 |
+
"""
|
94 |
+
final_prompt = (schema_context + additional_prompt + prompt)
|
95 |
+
response = create_open_ai_query(final_prompt)
|
96 |
+
os.remove(csv_file_name)
|
97 |
+
if response["success"]:
|
98 |
+
return {"success": True, "data": response["data"]}
|
99 |
+
else:
|
100 |
+
return {"success": False, "error": response}
|
101 |
+
else:
|
102 |
+
return {"success": False}
|
constants.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
# OPENAI
|
4 |
+
|
5 |
+
OPENAI_API_BASE_URL = "https://api.openai.com/v1"
|
6 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
7 |
+
TEXT_MODEL_ENGINE = 'gpt-4-0125-preview'
|
8 |
+
|
9 |
+
# GITHUB
|
10 |
+
GITHUB_AUTH_KEY = os.getenv("GITHUB_AUTH_KEY")
|
11 |
+
|
12 |
+
# REGEX
|
13 |
+
REPO_NAME_EXTRACTION_PATTERN = r"https://github.com/([^/]+)/([^/]+)$"
|
14 |
+
|
15 |
+
# SCHEMA
|
16 |
+
JSON_SCHEMA_FOR_GPT = {
|
17 |
+
"type": "object",
|
18 |
+
"properties": {
|
19 |
+
"issues": {
|
20 |
+
"type": "array",
|
21 |
+
"items": [
|
22 |
+
{
|
23 |
+
"type": "object",
|
24 |
+
"properties": {
|
25 |
+
"issue_title": {
|
26 |
+
"type": "string"
|
27 |
+
},
|
28 |
+
"rating": {
|
29 |
+
"type": "object",
|
30 |
+
"properties": {
|
31 |
+
"type": {
|
32 |
+
"type": "string"
|
33 |
+
},
|
34 |
+
"description": {
|
35 |
+
"type": "string"
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"required": [
|
39 |
+
"type",
|
40 |
+
"description"
|
41 |
+
]
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"required": [
|
45 |
+
"issue_title",
|
46 |
+
"rating"
|
47 |
+
]
|
48 |
+
}
|
49 |
+
]
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"required": [
|
53 |
+
"issues"
|
54 |
+
]
|
55 |
+
}
|