Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- app.py +46 -0
- create_print_layover.py +80 -0
- requirements.txt +4 -0
- texture_transfer.py +71 -0
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from texture_transfer import create_image_tile, create_layover, create_image_cutout, paste_image
|
4 |
+
|
5 |
+
st.title("Texture Correction App")
|
6 |
+
|
7 |
+
if 'clicked' not in st.session_state:
|
8 |
+
st.session_state.clicked = False
|
9 |
+
|
10 |
+
|
11 |
+
def click_button():
|
12 |
+
st.session_state.clicked = True
|
13 |
+
|
14 |
+
|
15 |
+
with st.sidebar:
|
16 |
+
st.text("Play around this values")
|
17 |
+
opacity = st.slider("Control opacity", min_value=0.0, max_value=100.0, value=100.0)
|
18 |
+
|
19 |
+
product, generated, texture_correct = st.columns(3)
|
20 |
+
with product:
|
21 |
+
st.header("Input product texture patch")
|
22 |
+
product_image = st.file_uploader("Patch of the Garment(Cut out an area from the garment)",
|
23 |
+
type=["png", "jpg", "jpeg"])
|
24 |
+
if product_image:
|
25 |
+
st.image(product_image)
|
26 |
+
|
27 |
+
with generated:
|
28 |
+
st.header("Input generated product Image & Mask")
|
29 |
+
generated_image = st.file_uploader("Generated Image", type=["png", "jpg", "jpeg"])
|
30 |
+
gen_image_mask = st.file_uploader("Generated Mask", type=["png", "jpg", "jpeg"])
|
31 |
+
if generated_image:
|
32 |
+
st.image(generated_image)
|
33 |
+
|
34 |
+
with texture_correct:
|
35 |
+
st.button("Texture Correct", on_click=click_button)
|
36 |
+
if st.session_state.clicked:
|
37 |
+
with st.spinner("Texture correcting🫡..."):
|
38 |
+
product_image = Image.open(generated_image)
|
39 |
+
product_image_dim = product_image.size
|
40 |
+
x_dim = product_image_dim[0]
|
41 |
+
y_dim = product_image_dim[0]
|
42 |
+
create_image_tile(product_image, x_dim, y_dim)
|
43 |
+
overlay = create_layover(generated_image, 'tiled_image.png', opacity)
|
44 |
+
create_image_cutout('lay_over_image.png', gen_image_mask)
|
45 |
+
paste_image(generated_image, 'cut_out_image.png', gen_image_mask)
|
46 |
+
st.image("result.png", caption="Texture Corrected Image", use_column_width=True)
|
create_print_layover.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def assert_image_format(image, fcn_name: str, arg_name: str, force_alpha: bool = True):
|
5 |
+
if not isinstance(image, np.ndarray):
|
6 |
+
err_msg = 'The blend_modes function "{fcn_name}" received a value of type "{var_type}" for its argument ' \
|
7 |
+
'"{arg_name}". The function however expects a value of type "np.ndarray" for this argument. Please ' \
|
8 |
+
'supply a variable of type np.ndarray to the "{arg_name}" argument.' \
|
9 |
+
.format(fcn_name=fcn_name, arg_name=arg_name, var_type=str(type(image).__name__))
|
10 |
+
raise TypeError(err_msg)
|
11 |
+
|
12 |
+
if not image.dtype.kind == 'f':
|
13 |
+
err_msg = 'The blend_modes function "{fcn_name}" received a numpy array of dtype (data type) kind ' \
|
14 |
+
'"{var_kind}" for its argument "{arg_name}". The function however expects a numpy array of the ' \
|
15 |
+
'data type kind "f" (floating-point) for this argument. Please supply a numpy array with the data ' \
|
16 |
+
'type kind "f" (floating-point) to the "{arg_name}" argument.' \
|
17 |
+
.format(fcn_name=fcn_name, arg_name=arg_name, var_kind=str(image.dtype.kind))
|
18 |
+
raise TypeError(err_msg)
|
19 |
+
|
20 |
+
if not len(image.shape) == 3:
|
21 |
+
err_msg = 'The blend_modes function "{fcn_name}" received a {n_dim}-dimensional numpy array for its argument ' \
|
22 |
+
'"{arg_name}". The function however expects a 3-dimensional array for this argument in the shape ' \
|
23 |
+
'(height x width x R/G/B/A layers). Please supply a 3-dimensional numpy array with that shape to ' \
|
24 |
+
'the "{arg_name}" argument.' \
|
25 |
+
.format(fcn_name=fcn_name, arg_name=arg_name, n_dim=str(len(image.shape)))
|
26 |
+
raise TypeError(err_msg)
|
27 |
+
|
28 |
+
if force_alpha and not image.shape[2] == 4:
|
29 |
+
err_msg = 'The blend_modes function "{fcn_name}" received a numpy array with {n_layers} layers for its ' \
|
30 |
+
'argument "{arg_name}". The function however expects a 4-layer array representing red, green, ' \
|
31 |
+
'blue, and alpha channel for this argument. Please supply a numpy array that includes all 4 layers ' \
|
32 |
+
'to the "{arg_name}" argument.' \
|
33 |
+
.format(fcn_name=fcn_name, arg_name=arg_name, n_layers=str(image.shape[2]))
|
34 |
+
raise TypeError(err_msg)
|
35 |
+
|
36 |
+
|
37 |
+
def assert_opacity(opacity, fcn_name: str, arg_name: str = 'opacity'):
|
38 |
+
if not isinstance(opacity, float) and not isinstance(opacity, int):
|
39 |
+
err_msg = 'The blend_modes function "{fcn_name}" received a variable of type "{var_type}" for its argument ' \
|
40 |
+
'"{arg_name}". The function however expects the value passed to "{arg_name}" to be of type ' \
|
41 |
+
'"float". Please pass a variable of type "float" to the "{arg_name}" argument of function ' \
|
42 |
+
'"{fcn_name}".' \
|
43 |
+
.format(fcn_name=fcn_name, arg_name=arg_name, var_type=str(type(opacity).__name__))
|
44 |
+
raise TypeError(err_msg)
|
45 |
+
|
46 |
+
if not 0.0 <= opacity <= 1.0:
|
47 |
+
err_msg = 'The blend_modes function "{fcn_name}" received the value "{val}" for its argument "{arg_name}". ' \
|
48 |
+
'The function however expects that the value for "{arg_name}" is inside the range 0.0 <= x <= 1.0. ' \
|
49 |
+
'Please pass a variable in that range to the "{arg_name}" argument of function "{fcn_name}".' \
|
50 |
+
.format(fcn_name=fcn_name, arg_name=arg_name, val=str(opacity))
|
51 |
+
raise ValueError(err_msg)
|
52 |
+
|
53 |
+
|
54 |
+
def _compose_alpha(img_in, img_layer, opacity):
|
55 |
+
comp_alpha = np.minimum(img_in[:, :, 3], img_layer[:, :, 3]) * opacity
|
56 |
+
new_alpha = img_in[:, :, 3] + (1.0 - img_in[:, :, 3]) * comp_alpha
|
57 |
+
np.seterr(divide='ignore', invalid='ignore')
|
58 |
+
ratio = comp_alpha / new_alpha
|
59 |
+
ratio[ratio == np.NAN] = 0.0
|
60 |
+
return ratio
|
61 |
+
|
62 |
+
|
63 |
+
def create_hard_light_layover(img_in, img_layer, opacity, disable_type_checks: bool = False):
|
64 |
+
if not disable_type_checks:
|
65 |
+
_fcn_name = 'hard_light'
|
66 |
+
assert_image_format(img_in, _fcn_name, 'img_in')
|
67 |
+
assert_image_format(img_layer, _fcn_name, 'img_layer')
|
68 |
+
assert_opacity(opacity, _fcn_name)
|
69 |
+
img_in_norm = img_in / 255.0
|
70 |
+
img_layer_norm = img_layer / 255.0
|
71 |
+
ratio = _compose_alpha(img_in_norm, img_layer_norm, opacity)
|
72 |
+
comp = np.greater(img_layer_norm[:, :, :3], 0.5) \
|
73 |
+
* np.minimum(1.0 - ((1.0 - img_in_norm[:, :, :3])
|
74 |
+
* (1.0 - (img_layer_norm[:, :, :3] - 0.5) * 2.0)), 1.0) \
|
75 |
+
+ np.logical_not(np.greater(img_layer_norm[:, :, :3], 0.5)) \
|
76 |
+
* np.minimum(img_in_norm[:, :, :3] * (img_layer_norm[:, :, :3] * 2.0), 1.0)
|
77 |
+
ratio_rs = np.reshape(np.repeat(ratio, 3), [comp.shape[0], comp.shape[1], comp.shape[2]])
|
78 |
+
img_out = comp * ratio_rs + img_in_norm[:, :, :3] * (1.0 - ratio_rs)
|
79 |
+
img_out = np.nan_to_num(np.dstack((img_out, img_in_norm[:, :, 3]))) # add alpha channel and replace nans
|
80 |
+
return img_out * 255.0
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit~=1.36.0
|
2 |
+
opencv-python~=4.10.0.84
|
3 |
+
numpy~=2.0.0
|
4 |
+
pillow~=10.4.0
|
texture_transfer.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageOps
|
2 |
+
import numpy as np
|
3 |
+
from create_print_layover import create_hard_light_layover
|
4 |
+
import cv2
|
5 |
+
|
6 |
+
|
7 |
+
def create_layover(background_image, layer_image, opacity):
|
8 |
+
background_img_raw = Image.open(background_image)
|
9 |
+
background_img_raw = background_img_raw.convert("RGBA")
|
10 |
+
background_img = np.array(background_img_raw)
|
11 |
+
background_img_float = background_img.astype(float)
|
12 |
+
foreground_img_raw = Image.open(layer_image)
|
13 |
+
foreground_img_raw = foreground_img_raw.convert("RGBA")
|
14 |
+
foreground_img = np.array(foreground_img_raw)
|
15 |
+
foreground_img_float = foreground_img.astype(float)
|
16 |
+
blended_img_float = create_hard_light_layover(background_img_float, foreground_img_float, opacity)
|
17 |
+
blended_img = np.uint8(blended_img_float)
|
18 |
+
blended_img_raw = Image.fromarray(blended_img)
|
19 |
+
output_path = "lay_over_image.png"
|
20 |
+
blended_img_raw.save(output_path)
|
21 |
+
return output_path
|
22 |
+
|
23 |
+
|
24 |
+
def create_image_tile(input_patch, x_dim, y_dim):
|
25 |
+
input_image = Image.open(input_patch)
|
26 |
+
input_image = input_image.convert("RGB")
|
27 |
+
width, height = input_image.size
|
28 |
+
output_image = Image.new("RGB", (x_dim, y_dim))
|
29 |
+
for y in range(0, y_dim, height):
|
30 |
+
for x in range(0, x_dim, width):
|
31 |
+
region_height = min(height, y_dim - y)
|
32 |
+
region_width = min(width, x_dim - x)
|
33 |
+
region = input_image.crop((0, 0, region_width, region_height))
|
34 |
+
output_image.paste(region, (x, y))
|
35 |
+
output_image.save('tiled_image.png')
|
36 |
+
|
37 |
+
|
38 |
+
def create_image_cutout(texture_transfer_image, actual_mask):
|
39 |
+
image = Image.open(texture_transfer_image)
|
40 |
+
mask = Image.open(actual_mask).convert('L')
|
41 |
+
if mask.size != image.size:
|
42 |
+
image = image.resize(mask.size, Image.Resampling.NEAREST)
|
43 |
+
image_np = np.array(image)
|
44 |
+
mask_np = np.array(mask)
|
45 |
+
binary_mask = (mask_np > 127).astype(np.uint8) * 255
|
46 |
+
masked_image_np = image_np * np.expand_dims(binary_mask, axis=-1) // 255
|
47 |
+
masked_image = Image.fromarray(masked_image_np)
|
48 |
+
masked_image.save('cut_out_image.png')
|
49 |
+
|
50 |
+
|
51 |
+
def paste_image(base_image_path, cutout_image_path, mask_path):
|
52 |
+
background = Image.open(base_image_path).convert("RGB")
|
53 |
+
cutout = Image.open(cutout_image_path)
|
54 |
+
mask = Image.open(mask_path).convert("L")
|
55 |
+
if cutout.mode == 'RGBA':
|
56 |
+
cutout_rgb = cutout.convert("RGB")
|
57 |
+
cutout_alpha = cutout.split()[-1]
|
58 |
+
else:
|
59 |
+
cutout_rgb = cutout
|
60 |
+
cutout_alpha = mask
|
61 |
+
cutout_rgb = cutout_rgb.resize(background.size, Image.Resampling.NEAREST)
|
62 |
+
cutout_alpha = cutout_alpha.resize(background.size, Image.Resampling.NEAREST)
|
63 |
+
cutout_alpha_np = np.array(cutout_alpha)
|
64 |
+
binary_mask = (cutout_alpha_np > 128).astype(np.uint8) * 255
|
65 |
+
cutout_rgb_np = np.array(cutout_rgb)
|
66 |
+
background_np = np.array(background)
|
67 |
+
cutout_masked = cutout_rgb_np * np.expand_dims(binary_mask, axis=-1) // 255
|
68 |
+
background_masked = background_np * np.expand_dims(255 - binary_mask, axis=-1) // 255
|
69 |
+
result_np = cutout_masked + background_masked
|
70 |
+
result = Image.fromarray(result_np.astype(np.uint8))
|
71 |
+
result.save('result.png')
|