Anustup commited on
Commit
2bb6827
·
verified ·
1 Parent(s): 1d92830

Update create_print_layover.py

Browse files
Files changed (1) hide show
  1. create_print_layover.py +80 -80
create_print_layover.py CHANGED
@@ -1,80 +1,80 @@
1
- import numpy as np
2
-
3
-
4
- def assert_image_format(image, fcn_name: str, arg_name: str, force_alpha: bool = True):
5
- if not isinstance(image, np.ndarray):
6
- err_msg = 'The blend_modes function "{fcn_name}" received a value of type "{var_type}" for its argument ' \
7
- '"{arg_name}". The function however expects a value of type "np.ndarray" for this argument. Please ' \
8
- 'supply a variable of type np.ndarray to the "{arg_name}" argument.' \
9
- .format(fcn_name=fcn_name, arg_name=arg_name, var_type=str(type(image).__name__))
10
- raise TypeError(err_msg)
11
-
12
- if not image.dtype.kind == 'f':
13
- err_msg = 'The blend_modes function "{fcn_name}" received a numpy array of dtype (data type) kind ' \
14
- '"{var_kind}" for its argument "{arg_name}". The function however expects a numpy array of the ' \
15
- 'data type kind "f" (floating-point) for this argument. Please supply a numpy array with the data ' \
16
- 'type kind "f" (floating-point) to the "{arg_name}" argument.' \
17
- .format(fcn_name=fcn_name, arg_name=arg_name, var_kind=str(image.dtype.kind))
18
- raise TypeError(err_msg)
19
-
20
- if not len(image.shape) == 3:
21
- err_msg = 'The blend_modes function "{fcn_name}" received a {n_dim}-dimensional numpy array for its argument ' \
22
- '"{arg_name}". The function however expects a 3-dimensional array for this argument in the shape ' \
23
- '(height x width x R/G/B/A layers). Please supply a 3-dimensional numpy array with that shape to ' \
24
- 'the "{arg_name}" argument.' \
25
- .format(fcn_name=fcn_name, arg_name=arg_name, n_dim=str(len(image.shape)))
26
- raise TypeError(err_msg)
27
-
28
- if force_alpha and not image.shape[2] == 4:
29
- err_msg = 'The blend_modes function "{fcn_name}" received a numpy array with {n_layers} layers for its ' \
30
- 'argument "{arg_name}". The function however expects a 4-layer array representing red, green, ' \
31
- 'blue, and alpha channel for this argument. Please supply a numpy array that includes all 4 layers ' \
32
- 'to the "{arg_name}" argument.' \
33
- .format(fcn_name=fcn_name, arg_name=arg_name, n_layers=str(image.shape[2]))
34
- raise TypeError(err_msg)
35
-
36
-
37
- def assert_opacity(opacity, fcn_name: str, arg_name: str = 'opacity'):
38
- if not isinstance(opacity, float) and not isinstance(opacity, int):
39
- err_msg = 'The blend_modes function "{fcn_name}" received a variable of type "{var_type}" for its argument ' \
40
- '"{arg_name}". The function however expects the value passed to "{arg_name}" to be of type ' \
41
- '"float". Please pass a variable of type "float" to the "{arg_name}" argument of function ' \
42
- '"{fcn_name}".' \
43
- .format(fcn_name=fcn_name, arg_name=arg_name, var_type=str(type(opacity).__name__))
44
- raise TypeError(err_msg)
45
-
46
- if not 0.0 <= opacity <= 1.0:
47
- err_msg = 'The blend_modes function "{fcn_name}" received the value "{val}" for its argument "{arg_name}". ' \
48
- 'The function however expects that the value for "{arg_name}" is inside the range 0.0 <= x <= 1.0. ' \
49
- 'Please pass a variable in that range to the "{arg_name}" argument of function "{fcn_name}".' \
50
- .format(fcn_name=fcn_name, arg_name=arg_name, val=str(opacity))
51
- raise ValueError(err_msg)
52
-
53
-
54
- def _compose_alpha(img_in, img_layer, opacity):
55
- comp_alpha = np.minimum(img_in[:, :, 3], img_layer[:, :, 3]) * opacity
56
- new_alpha = img_in[:, :, 3] + (1.0 - img_in[:, :, 3]) * comp_alpha
57
- np.seterr(divide='ignore', invalid='ignore')
58
- ratio = comp_alpha / new_alpha
59
- ratio[ratio == np.NAN] = 0.0
60
- return ratio
61
-
62
-
63
- def create_hard_light_layover(img_in, img_layer, opacity, disable_type_checks: bool = False):
64
- if not disable_type_checks:
65
- _fcn_name = 'hard_light'
66
- assert_image_format(img_in, _fcn_name, 'img_in')
67
- assert_image_format(img_layer, _fcn_name, 'img_layer')
68
- assert_opacity(opacity, _fcn_name)
69
- img_in_norm = img_in / 255.0
70
- img_layer_norm = img_layer / 255.0
71
- ratio = _compose_alpha(img_in_norm, img_layer_norm, opacity)
72
- comp = np.greater(img_layer_norm[:, :, :3], 0.5) \
73
- * np.minimum(1.0 - ((1.0 - img_in_norm[:, :, :3])
74
- * (1.0 - (img_layer_norm[:, :, :3] - 0.5) * 2.0)), 1.0) \
75
- + np.logical_not(np.greater(img_layer_norm[:, :, :3], 0.5)) \
76
- * np.minimum(img_in_norm[:, :, :3] * (img_layer_norm[:, :, :3] * 2.0), 1.0)
77
- ratio_rs = np.reshape(np.repeat(ratio, 3), [comp.shape[0], comp.shape[1], comp.shape[2]])
78
- img_out = comp * ratio_rs + img_in_norm[:, :, :3] * (1.0 - ratio_rs)
79
- img_out = np.nan_to_num(np.dstack((img_out, img_in_norm[:, :, 3]))) # add alpha channel and replace nans
80
- return img_out * 255.0
 
1
+ import numpy as np
2
+
3
+
4
+ def assert_image_format(image, fcn_name: str, arg_name: str, force_alpha: bool = True):
5
+ if not isinstance(image, np.ndarray):
6
+ err_msg = 'The blend_modes function "{fcn_name}" received a value of type "{var_type}" for its argument ' \
7
+ '"{arg_name}". The function however expects a value of type "np.ndarray" for this argument. Please ' \
8
+ 'supply a variable of type np.ndarray to the "{arg_name}" argument.' \
9
+ .format(fcn_name=fcn_name, arg_name=arg_name, var_type=str(type(image).__name__))
10
+ raise TypeError(err_msg)
11
+
12
+ if not image.dtype.kind == 'f':
13
+ err_msg = 'The blend_modes function "{fcn_name}" received a numpy array of dtype (data type) kind ' \
14
+ '"{var_kind}" for its argument "{arg_name}". The function however expects a numpy array of the ' \
15
+ 'data type kind "f" (floating-point) for this argument. Please supply a numpy array with the data ' \
16
+ 'type kind "f" (floating-point) to the "{arg_name}" argument.' \
17
+ .format(fcn_name=fcn_name, arg_name=arg_name, var_kind=str(image.dtype.kind))
18
+ raise TypeError(err_msg)
19
+
20
+ if not len(image.shape) == 3:
21
+ err_msg = 'The blend_modes function "{fcn_name}" received a {n_dim}-dimensional numpy array for its argument ' \
22
+ '"{arg_name}". The function however expects a 3-dimensional array for this argument in the shape ' \
23
+ '(height x width x R/G/B/A layers). Please supply a 3-dimensional numpy array with that shape to ' \
24
+ 'the "{arg_name}" argument.' \
25
+ .format(fcn_name=fcn_name, arg_name=arg_name, n_dim=str(len(image.shape)))
26
+ raise TypeError(err_msg)
27
+
28
+ if force_alpha and not image.shape[2] == 4:
29
+ err_msg = 'The blend_modes function "{fcn_name}" received a numpy array with {n_layers} layers for its ' \
30
+ 'argument "{arg_name}". The function however expects a 4-layer array representing red, green, ' \
31
+ 'blue, and alpha channel for this argument. Please supply a numpy array that includes all 4 layers ' \
32
+ 'to the "{arg_name}" argument.' \
33
+ .format(fcn_name=fcn_name, arg_name=arg_name, n_layers=str(image.shape[2]))
34
+ raise TypeError(err_msg)
35
+
36
+
37
+ def assert_opacity(opacity, fcn_name: str, arg_name: str = 'opacity'):
38
+ if not isinstance(opacity, float) and not isinstance(opacity, int):
39
+ err_msg = 'The blend_modes function "{fcn_name}" received a variable of type "{var_type}" for its argument ' \
40
+ '"{arg_name}". The function however expects the value passed to "{arg_name}" to be of type ' \
41
+ '"float". Please pass a variable of type "float" to the "{arg_name}" argument of function ' \
42
+ '"{fcn_name}".' \
43
+ .format(fcn_name=fcn_name, arg_name=arg_name, var_type=str(type(opacity).__name__))
44
+ raise TypeError(err_msg)
45
+
46
+ if not 0.0 <= opacity <= 1.0:
47
+ err_msg = 'The blend_modes function "{fcn_name}" received the value "{val}" for its argument "{arg_name}". ' \
48
+ 'The function however expects that the value for "{arg_name}" is inside the range 0.0 <= x <= 1.0. ' \
49
+ 'Please pass a variable in that range to the "{arg_name}" argument of function "{fcn_name}".' \
50
+ .format(fcn_name=fcn_name, arg_name=arg_name, val=str(opacity))
51
+ raise ValueError(err_msg)
52
+
53
+
54
+ def _compose_alpha(img_in, img_layer, opacity):
55
+ comp_alpha = np.minimum(img_in[:, :, 3], img_layer[:, :, 3]) * opacity
56
+ new_alpha = img_in[:, :, 3] + (1.0 - img_in[:, :, 3]) * comp_alpha
57
+ np.seterr(divide='ignore', invalid='ignore')
58
+ ratio = comp_alpha / new_alpha
59
+ ratio[ratio == np.nan] = 0.0
60
+ return ratio
61
+
62
+
63
+ def create_hard_light_layover(img_in, img_layer, opacity, disable_type_checks: bool = False):
64
+ if not disable_type_checks:
65
+ _fcn_name = 'hard_light'
66
+ assert_image_format(img_in, _fcn_name, 'img_in')
67
+ assert_image_format(img_layer, _fcn_name, 'img_layer')
68
+ assert_opacity(opacity, _fcn_name)
69
+ img_in_norm = img_in / 255.0
70
+ img_layer_norm = img_layer / 255.0
71
+ ratio = _compose_alpha(img_in_norm, img_layer_norm, opacity)
72
+ comp = np.greater(img_layer_norm[:, :, :3], 0.5) \
73
+ * np.minimum(1.0 - ((1.0 - img_in_norm[:, :, :3])
74
+ * (1.0 - (img_layer_norm[:, :, :3] - 0.5) * 2.0)), 1.0) \
75
+ + np.logical_not(np.greater(img_layer_norm[:, :, :3], 0.5)) \
76
+ * np.minimum(img_in_norm[:, :, :3] * (img_layer_norm[:, :, :3] * 2.0), 1.0)
77
+ ratio_rs = np.reshape(np.repeat(ratio, 3), [comp.shape[0], comp.shape[1], comp.shape[2]])
78
+ img_out = comp * ratio_rs + img_in_norm[:, :, :3] * (1.0 - ratio_rs)
79
+ img_out = np.nan_to_num(np.dstack((img_out, img_in_norm[:, :, 3]))) # add alpha channel and replace nans
80
+ return img_out * 255.0