File size: 1,478 Bytes
8f243be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from inference import Inference
import argparse
import gradio as gr
import glob

def parse_option():
    parser = argparse.ArgumentParser('MetaFG Inference script', add_help=False)
    parser.add_argument('--cfg', type=str, metavar="FILE", help='path to config file', default="configs/MetaFG_2_224.yaml")
    # easy config modification
    parser.add_argument('--model-path', type=str, help="path to model data", default="./ckpt_4_mf2.pth")
    parser.add_argument('--img-size', type=int, default=384, help='path to image')
    parser.add_argument('--meta-path', default="meta.txt", type=str, help='path to meta data')
    parser.add_argument('--names-path', default="names_mf2.txt", type=str, help='path to meta data')
    args = parser.parse_args()
    return args

if __name__ == '__main__':
    args = parse_option()

    model = Inference(config_path=args.cfg,
                       model_path=args.model_path,
                       names_path=args.names_path)
    
    def classify(image):
        preds = model.infer(img_path=image, meta_data_path="meta.txt").squeeze()
        print(len(model.classes))
        print(model.classes)
        confidences = {c: float(preds[i]) for i,c in enumerate(model.classes)}

        return confidences
    
    gr.Interface(pfn=classify, 
            inputs=gr.Image(shape=(args.img_size, args.img_size), type="pil"),
            outputs=gr.Label(num_top_classes=10),
            examples=glob.glob("./example_images/*")).launch()