File size: 1,790 Bytes
4a3ad95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import argparse
import torch
from timm.models import create_model
from models.CoAt import *

try:
    from mmcv.cnn import get_model_complexity_info
    from mmcv.cnn.utils.flops_counter import get_model_complexity_info, flops_to_string, params_to_string
except ImportError:
    raise ImportError('Please upgrade mmcv to >0.6.2')


def parse_args():
    parser = argparse.ArgumentParser(description='Get FLOPS of a classification model')
    parser.add_argument('model', help='train config file path')
    parser.add_argument(
        '--shape',
        type=int,
        nargs='+',
        default=[224,],
        help='input image size')
    args = parser.parse_args()
    return args

def get_flops(model, input_shape):
    flops, params = get_model_complexity_info(model, input_shape, as_strings=False)
    return flops_to_string(flops), params_to_string(params)


def main():
    args = parse_args()

    if len(args.shape) == 1:
        input_shape = (3, args.shape[0], args.shape[0])
    elif len(args.shape) == 2:
        input_shape = (3,) + tuple(args.shape)
    else:
        raise ValueError('invalid input shape')

    model = create_model(
        args.model,
        pretrained=False,
        num_classes=1000,
        img_size=args.shape[0],
    )
    model.name = args.model
    if torch.cuda.is_available():
        model.cuda()
    model.eval()

    flops, params = get_flops(model, input_shape)

    split_line = '=' * 30
    print(f'{split_line}\nInput shape: {input_shape}\n'
          f'Flops: {flops}\nParams: {params}\n{split_line}')
    print('!!!Please be cautious if you use the results in papers. '
          'You may need to check if all ops are supported and verify that the '
          'flops computation is correct.')


if __name__ == '__main__':
    main()