Spaces:
Running
Running
File size: 18,782 Bytes
4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 8f243be 4a3ad95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
import os
import time
import argparse
import datetime
import json
import numpy as np
from collections import defaultdict
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.utils import accuracy, AverageMeter
from config import get_config
from models import build_model
from data import build_loader
from lr_scheduler import build_scheduler
from optimizer import build_optimizer
from logger import create_logger
from utils import load_checkpoint, save_checkpoint, get_grad_norm, auto_resume_helper, reduce_tensor,load_pretained
have_wandb = False
try:
import wandb
have_wandb = True
except:
pass
# TODO use torch.amp
try:
# noinspection PyUnresolvedReferences
from apex import amp
except ImportError:
amp = None
import logging
logging.basicConfig(level=logging.INFO)
def parse_option():
parser = argparse.ArgumentParser('MetaFG training and evaluation script', add_help=False)
parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file', )
parser.add_argument(
"--opts",
help="Modify config options by adding 'KEY VALUE' pairs. ",
default=None,
nargs='+',
)
# easy config modification
parser.add_argument('--batch-size', type=int, help="batch size for single GPU")
parser.add_argument('--data-path',default='./imagenet', type=str, help='path to dataset')
parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset')
parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'],
help='no: no cache, '
'full: cache all data, '
'part: sharding the dataset into nonoverlapping pieces and only cache one piece')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps")
parser.add_argument('--use-checkpoint', action='store_true',
help="whether to use gradient checkpointing to save memory")
parser.add_argument('--amp-opt-level', type=str, default='O1', choices=['O0', 'O1', 'O2'],
help='mixed precision opt level, if O0, no amp is used')
parser.add_argument('--output', default='output', type=str, metavar='PATH',
help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)')
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--throughput', action='store_true', help='Test throughput only')
parser.add_argument('--num-workers', type=int,
help="num of workers on dataloader ")
parser.add_argument('--lr', type=float, metavar='LR',
help='learning rate')
parser.add_argument('--weight-decay', type=float,
help='weight decay (default: 0.05 for adamw)')
parser.add_argument('--min-lr', type=float,
help='learning rate')
parser.add_argument('--warmup-lr', type=float,
help='warmup learning rate')
parser.add_argument('--epochs', type=int,
help="epochs")
parser.add_argument('--warmup-epochs', type=int,
help="epochs")
parser.add_argument('--dataset', type=str,
help='dataset')
parser.add_argument('--lr-scheduler-name', type=str,
help='lr scheduler name,cosin linear,step')
parser.add_argument('--pretrain', type=str,
help='pretrain')
parser.add_argument('--wandb_job', type=str)
args, unparsed = parser.parse_known_args()
config = get_config(args)
if have_wandb and int(config.LOCAL_RANK) == 0:
wandb.init(name = args.wandb_job, config=args)
return args, config
def main(config):
dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn = build_loader(config)
logger.info(f"Creating model:{config.MODEL.TYPE}/{config.MODEL.NAME}")
model = build_model(config)
if have_wandb and int(config.LOCAL_RANK) == 0:
wandb.config['model_config'] = config
model.cuda()
logger.info(str(model))
optimizer = build_optimizer(config, model)
if config.AMP_OPT_LEVEL != "O0":
model, optimizer = amp.initialize(model, optimizer, opt_level=config.AMP_OPT_LEVEL)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[int(config.LOCAL_RANK)], broadcast_buffers=False)
model_without_ddp = model.module
if have_wandb and int(config.LOCAL_RANK) == 0:
wandb.watch(model, log_freq=100)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info(f"number of params: {n_parameters}")
if hasattr(model_without_ddp, 'flops'):
flops = model_without_ddp.flops()
logger.info(f"number of GFLOPs: {flops / 1e9}")
lr_scheduler = build_scheduler(config, optimizer, len(data_loader_train))
if config.AUG.MIXUP > 0.:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif config.MODEL.LABEL_SMOOTHING > 0.:
criterion = LabelSmoothingCrossEntropy(smoothing=config.MODEL.LABEL_SMOOTHING)
else:
criterion = torch.nn.CrossEntropyLoss()
max_accuracy = 0.0
if config.MODEL.PRETRAINED:
load_pretained(config,model_without_ddp,logger)
# Run initial validation
logger.info("Start validation (on init)")
acc1, acc5, loss, stats = validate(config, data_loader_val, model, limit=10)
with open(os.path.join(config.OUTPUT, f'val_init.json'), 'w') as fp:
json.dump(stats, fp, indent=1)
logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%")
if config.TRAIN.AUTO_RESUME:
resume_file = auto_resume_helper(config.OUTPUT)
if resume_file:
if config.MODEL.RESUME:
logger.warning(f"auto-resume changing resume file from {config.MODEL.RESUME} to {resume_file}")
config.defrost()
config.MODEL.RESUME = resume_file
config.freeze()
logger.info(f'auto resuming from {resume_file}')
else:
logger.info(f'no checkpoint found in {config.OUTPUT}, ignoring auto resume')
if config.MODEL.RESUME:
logger.info(f"**********normal test***********")
max_accuracy = load_checkpoint(config, model_without_ddp, optimizer, lr_scheduler, logger)
acc1, acc5, loss, stats = validate(config, data_loader_val, model)
logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%")
if config.DATA.ADD_META:
logger.info(f"**********mask meta test***********")
acc1, acc5, loss, stats = validate(config, data_loader_val, model,mask_meta=True)
logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%")
if config.EVAL_MODE:
return
if config.THROUGHPUT_MODE:
throughput(data_loader_val, model, logger)
return
logger.info("Start training")
start_time = time.time()
for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):
data_loader_train.sampler.set_epoch(epoch)
train_one_epoch_local_data(config, model, criterion, data_loader_train, optimizer, epoch, mixup_fn, lr_scheduler)
if dist.get_rank() == 0 and (epoch % config.SAVE_FREQ == 0 or epoch == (config.TRAIN.EPOCHS - 1)):
save_checkpoint(config, epoch, model_without_ddp, max_accuracy, optimizer, lr_scheduler, logger)
logger.info(f"**********normal test***********")
acc1, acc5, loss, stats = validate(config, data_loader_val, model)
with open(os.path.join(config.OUTPUT, f'val_{epoch}.json'), 'w') as fp:
json.dump(stats, fp, indent=1)
logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%")
max_accuracy = max(max_accuracy, acc1)
logger.info(f'Max accuracy: {max_accuracy:.2f}%')
if config.DATA.ADD_META:
logger.info(f"**********mask meta test***********")
acc1, acc5, loss, stats = validate(config, data_loader_val, model,mask_meta=True)
with open(os.path.join(config.OUTPUT, f'val_{epoch}_meta.json'), 'w') as fp:
json.dump(stats, fp, indent=1)
logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%")
# data_loader_train.terminate()
if have_wandb and int(config.LOCAL_RANK) == 0:
wandb.run.summary["acc_top_1"] = acc1
wandb.run.summary["acc_top_5"] = acc5
wandb.run.summary["val_loss"] = loss
wandb.log({'val/acc1': acc1})
wandb.log({'val/acc5': acc5})
wandb.log({'val/loss': acc5})
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info('Training time {}'.format(total_time_str))
def train_one_epoch_local_data(config, model, criterion, data_loader, optimizer, epoch, mixup_fn, lr_scheduler,tb_logger=None):
model.train()
if hasattr(model.module,'cur_epoch'):
model.module.cur_epoch = epoch
model.module.total_epoch = config.TRAIN.EPOCHS
optimizer.zero_grad()
num_steps = len(data_loader)
batch_time = AverageMeter()
loss_meter = AverageMeter()
norm_meter = AverageMeter()
start = time.time()
end = time.time()
for idx, data in enumerate(data_loader):
if config.DATA.ADD_META:
samples, targets,meta = data
meta = [m.float() for m in meta]
meta = torch.stack(meta,dim=0)
meta = meta.cuda(non_blocking=True)
else:
samples, targets= data
meta = None
samples = samples.cuda(non_blocking=True)
targets = targets.cuda(non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
if config.DATA.ADD_META:
outputs = model(samples,meta)
else:
outputs = model(samples)
if config.TRAIN.ACCUMULATION_STEPS > 1:
loss = criterion(outputs, targets)
loss = loss / config.TRAIN.ACCUMULATION_STEPS
if config.AMP_OPT_LEVEL != "O0":
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
if config.TRAIN.CLIP_GRAD:
grad_norm = torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), config.TRAIN.CLIP_GRAD)
else:
grad_norm = get_grad_norm(amp.master_params(optimizer))
else:
loss.backward()
if config.TRAIN.CLIP_GRAD:
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.TRAIN.CLIP_GRAD)
else:
grad_norm = get_grad_norm(model.parameters())
if (idx + 1) % config.TRAIN.ACCUMULATION_STEPS == 0:
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step_update(epoch * num_steps + idx)
else:
loss = criterion(outputs, targets)
optimizer.zero_grad()
if config.AMP_OPT_LEVEL != "O0":
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
if config.TRAIN.CLIP_GRAD:
grad_norm = torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), config.TRAIN.CLIP_GRAD)
else:
grad_norm = get_grad_norm(amp.master_params(optimizer))
else:
loss.backward()
if config.TRAIN.CLIP_GRAD:
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.TRAIN.CLIP_GRAD)
else:
grad_norm = get_grad_norm(model.parameters())
optimizer.step()
lr_scheduler.step_update(epoch * num_steps + idx)
torch.cuda.synchronize()
loss_meter.update(loss.item(), targets.size(0))
norm_meter.update(grad_norm)
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
lr = optimizer.param_groups[0]['lr']
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
etas = batch_time.avg * (num_steps - idx)
if have_wandb and int(config.LOCAL_RANK) == 0 and idx % 100 == 0:
wandb.log({"train/loss": loss_meter.val})
logger.info(
f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t'
f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t'
f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t'
f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f})\t'
f'mem {memory_used:.0f}MB')
epoch_time = time.time() - start
logger.info(f"EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}")
@torch.no_grad()
def validate(config, data_loader, model, mask_meta=False, limit=None):
criterion = torch.nn.CrossEntropyLoss()
model.eval()
batch_time = AverageMeter()
loss_meter = AverageMeter()
acc1_meter = AverageMeter()
acc5_meter = AverageMeter()
stats = defaultdict(list)
end = time.time()
for idx, data in enumerate(data_loader):
if limit:
if idx > limit:
break
if config.DATA.ADD_META:
images,target,meta = data
meta = [m.float() for m in meta]
meta = torch.stack(meta,dim=0)
if mask_meta:
meta = torch.zeros_like(meta)
meta = meta.cuda(non_blocking=True)
else:
images, target = data
meta = None
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
if config.DATA.ADD_META:
output = model(images,meta)
else:
output = model(images)
# measure accuracy and record loss
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
acc1 = reduce_tensor(acc1)
acc5 = reduce_tensor(acc5)
loss = reduce_tensor(loss)
loss_meter.update(loss.item(), target.size(0))
acc1_meter.update(acc1.item(), target.size(0))
acc5_meter.update(acc5.item(), target.size(0))
for t in target:
stats[int(t.item())].append((acc1.item(), acc5.item(), loss.item()))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % config.PRINT_FREQ == 0:
memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0)
logger.info(
f'Test: [{idx}/{len(data_loader)}]\t'
f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t'
f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t'
f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t'
f'Mem {memory_used:.0f}MB')
logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}')
return acc1_meter.avg, acc5_meter.avg, loss_meter.avg, stats
@torch.no_grad()
def throughput(data_loader, model, logger):
model.eval()
for idx, (images, _) in enumerate(data_loader):
images = images.cuda(non_blocking=True)
batch_size = images.shape[0]
for i in range(50):
model(images)
torch.cuda.synchronize()
logger.info(f"throughput averaged with 30 times")
tic1 = time.time()
for i in range(30):
model(images)
torch.cuda.synchronize()
tic2 = time.time()
logger.info(f"batch_size {batch_size} throughput {30 * batch_size / (tic2 - tic1)}")
return
if __name__ == '__main__':
_, config = parse_option()
if config.AMP_OPT_LEVEL != "O0":
assert amp is not None, "amp not installed!"
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
rank = int(os.environ["RANK"])
world_size = int(os.environ['WORLD_SIZE'])
print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}")
else:
rank = -1
world_size = -1
torch.cuda.set_device(f'cuda:{config.LOCAL_RANK}')
torch.distributed.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank)
torch.distributed.barrier()
seed = config.SEED + dist.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
# linear scale the learning rate according to total batch size, may not be optimal
linear_scaled_lr = config.TRAIN.BASE_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
linear_scaled_warmup_lr = config.TRAIN.WARMUP_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
linear_scaled_min_lr = config.TRAIN.MIN_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0
# gradient accumulation also need to scale the learning rate
if config.TRAIN.ACCUMULATION_STEPS > 1:
linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_warmup_lr = linear_scaled_warmup_lr * config.TRAIN.ACCUMULATION_STEPS
linear_scaled_min_lr = linear_scaled_min_lr * config.TRAIN.ACCUMULATION_STEPS
config.defrost()
config.TRAIN.BASE_LR = linear_scaled_lr
config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr
config.TRAIN.MIN_LR = linear_scaled_min_lr
config.freeze()
os.makedirs(config.OUTPUT, exist_ok=True)
logger = create_logger(output_dir=config.OUTPUT, dist_rank=dist.get_rank(), name=f"{config.MODEL.NAME}",local_rank=config.LOCAL_RANK)
if dist.get_rank() == 0:
path = os.path.join(config.OUTPUT, "config.json")
with open(path, "w") as f:
f.write(config.dump())
logger.info(f"Full config saved to {path}")
# print config
logger.info(config.dump())
main(config)
|