Spaces:
Running
Running
File size: 7,126 Bytes
4a3ad95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x, H=None, W=None):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class DWConv(nn.Module):
def __init__(self, dim=768):
super(DWConv, self).__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
def forward(self, x, H, W):
B, N, C = x.shape
x = x.transpose(1, 2).view(B, C, H, W)
x = self.dwconv(x)
x = x.flatten(2).transpose(1, 2)
return x
class Relative_Attention(nn.Module):
def __init__(self,dim,img_size,extra_token_num=1,num_heads=8,qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
self.extra_token_num = extra_token_num
head_dim = dim // num_heads
self.img_size = img_size # h,w
self.scale = qk_scale or head_dim ** -0.5
# define a parameter table of relative position bias,add cls_token bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * img_size[0] - 1) * (2 * img_size[1] - 1) + 1, num_heads)) # 2*h-1 * 2*w-1 + 1, nH
# get pair-wise relative position index for each token
coords_h = torch.arange(self.img_size[0])
coords_w = torch.arange(self.img_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, h, w
coords_flatten = torch.flatten(coords, 1) # 2, h*w
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, h*w, h*w
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # h*w, h*w, 2
relative_coords[:, :, 0] += self.img_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.img_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.img_size[1] - 1
relative_position_index = relative_coords.sum(-1) # h*w, h*w
relative_position_index = F.pad(relative_position_index,(extra_token_num,0,extra_token_num,0))
relative_position_index = relative_position_index.long()
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x,):
"""
Args:
x: input features with shape of (B, N, C)
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.img_size[0] * self.img_size[1] + self.extra_token_num, self.img_size[0] * self.img_size[1] + self.extra_token_num, -1) # h*w+1,h*w+1,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, h*w+1, h*w+1
attn = attn + relative_position_bias.unsqueeze(0)
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class OverlapPatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, patch_size=7, stride=4, in_chans=3, embed_dim=768):
super().__init__()
patch_size = to_2tuple(patch_size)
self.patch_size = patch_size
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
padding=(patch_size[0] // 2, patch_size[1] // 2))
self.norm = nn.LayerNorm(embed_dim)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x):
x = self.proj(x)
_, _, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
return x, H, W
class MHSABlock(nn.Module):
def __init__(self, input_dim, output_dim,image_size, stride, num_heads,extra_token_num=1,mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
if stride != 1:
self.patch_embed = OverlapPatchEmbed(patch_size=3,stride=stride,in_chans=input_dim,embed_dim=output_dim)
self.img_size = image_size//2
else:
self.patch_embed = None
self.img_size = image_size
self.img_size = to_2tuple(self.img_size)
self.norm1 = norm_layer(output_dim)
self.attn = Relative_Attention(
output_dim,self.img_size, extra_token_num=extra_token_num,num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(output_dim)
mlp_hidden_dim = int(output_dim * mlp_ratio)
self.mlp = Mlp(in_features=output_dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, H, W, extra_tokens=None):
if self.patch_embed is not None:
x,_,_ = self.patch_embed(x)
extra_tokens = [token.expand(x.shape[0],-1,-1) for token in extra_tokens]
extra_tokens.append(x)
x = torch.cat(extra_tokens,dim=1)
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x),H//2,W//2))
return x
|