metaformer / data /build.py
joshvm's picture
update to torch2
8f243be
raw
history blame
7.66 kB
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------
import os
import torch
import numpy as np
import torch.distributed as dist
from torchvision import datasets, transforms
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import Mixup
from timm.data import create_transform
from timm.data.transforms import str_to_interp_mode
from .cached_image_folder import CachedImageFolder
from .samplers import SubsetRandomSampler
from .dataset_fg import DatasetMeta
def build_loader(config):
config.defrost()
dataset_train, config.MODEL.NUM_CLASSES = build_dataset(is_train=True, config=config)
config.freeze()
print(f"local rank {config.LOCAL_RANK} / global rank {dist.get_rank()} successfully build train dataset")
dataset_val, _ = build_dataset(is_train=False, config=config)
print(f"local rank {config.LOCAL_RANK} / global rank {dist.get_rank()} successfully build val dataset")
num_tasks = dist.get_world_size()
global_rank = dist.get_rank()
if config.DATA.ZIP_MODE and config.DATA.CACHE_MODE == 'part':
indices = np.arange(dist.get_rank(), len(dataset_train), dist.get_world_size())
sampler_train = SubsetRandomSampler(indices)
else:
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
indices = np.arange(dist.get_rank(), len(dataset_val), dist.get_world_size())
sampler_val = SubsetRandomSampler(indices)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=config.DATA.BATCH_SIZE,
num_workers=config.DATA.NUM_WORKERS,
pin_memory=config.DATA.PIN_MEMORY,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=config.DATA.BATCH_SIZE,
shuffle=False,
num_workers=config.DATA.NUM_WORKERS,
pin_memory=config.DATA.PIN_MEMORY,
drop_last=False
)
# setup mixup / cutmix
mixup_fn = None
mixup_active = config.AUG.MIXUP > 0 or config.AUG.CUTMIX > 0. or config.AUG.CUTMIX_MINMAX is not None
if mixup_active:
mixup_fn = Mixup(
mixup_alpha=config.AUG.MIXUP, cutmix_alpha=config.AUG.CUTMIX, cutmix_minmax=config.AUG.CUTMIX_MINMAX,
prob=config.AUG.MIXUP_PROB, switch_prob=config.AUG.MIXUP_SWITCH_PROB, mode=config.AUG.MIXUP_MODE,
label_smoothing=config.MODEL.LABEL_SMOOTHING, num_classes=config.MODEL.NUM_CLASSES)
return dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn
def build_dataset(is_train, config):
transform = build_transform(is_train, config)
if config.DATA.DATASET == 'imagenet':
prefix = 'train' if is_train else 'val'
if config.DATA.ZIP_MODE:
ann_file = prefix + "_map.txt"
prefix = prefix + ".zip@/"
dataset = CachedImageFolder(config.DATA.DATA_PATH, ann_file, prefix, transform,
cache_mode=config.DATA.CACHE_MODE if is_train else 'part')
else:
# root = os.path.join(config.DATA.DATA_PATH, prefix)
root = './datasets/imagenet'
dataset = datasets.ImageFolder(root, transform=transform)
elif config.DATA.DATASET == 'inaturelist2021':
root = './datasets/inaturelist2021'
dataset = DatasetMeta(root=root,transform=transform,train=is_train,aux_info=config.DATA.ADD_META,dataset=config.DATA.DATASET)
elif config.DATA.DATASET == 'inaturelist2021_mini':
root = './datasets/inaturelist2021_mini'
dataset = DatasetMeta(root=root,transform=transform,train=is_train,aux_info=config.DATA.ADD_META,dataset=config.DATA.DATASET)
elif config.DATA.DATASET == 'inaturelist2017':
root = './datasets/inaturelist2017'
dataset = DatasetMeta(root=root,transform=transform,train=is_train,aux_info=config.DATA.ADD_META,dataset=config.DATA.DATASET)
elif config.DATA.DATASET == 'inaturelist2018':
root = './datasets/inaturelist2018'
dataset = DatasetMeta(root=root,transform=transform,train=is_train,aux_info=config.DATA.ADD_META,dataset=config.DATA.DATASET)
elif config.DATA.DATASET == 'cub-200':
root = './datasets/cub-200'
dataset = DatasetMeta(root=root,transform=transform,train=is_train,aux_info=config.DATA.ADD_META,dataset=config.DATA.DATASET)
elif config.DATA.DATASET == 'stanfordcars':
root = './datasets/stanfordcars'
dataset = DatasetMeta(root=root,transform=transform,train=is_train,aux_info=config.DATA.ADD_META,dataset=config.DATA.DATASET)
elif config.DATA.DATASET == 'oxfordflower':
root = './datasets/oxfordflower'
dataset = DatasetMeta(root=root,transform=transform,train=is_train,aux_info=config.DATA.ADD_META,dataset=config.DATA.DATASET)
elif config.DATA.DATASET == 'stanforddogs':
root = './datasets/stanforddogs'
dataset = DatasetMeta(root=root,transform=transform,train=is_train,aux_info=config.DATA.ADD_META,dataset=config.DATA.DATASET)
elif config.DATA.DATASET == 'nabirds':
root = './datasets/nabirds'
dataset = DatasetMeta(root=root,transform=transform,train=is_train,aux_info=config.DATA.ADD_META,dataset=config.DATA.DATASET)
elif config.DATA.DATASET == 'aircraft':
root = './datasets/aircraft'
dataset = DatasetMeta(root=root,transform=transform,train=is_train,aux_info=config.DATA.ADD_META,dataset=config.DATA.DATASET)
else:
root = config.DATA.DATASET_ROOT
dataset = DatasetMeta(root=root,transform=transform,train=is_train,aux_info=config.DATA.ADD_META,dataset=config.DATA.DATASET)
nb_classes = len(dataset.class_to_idx)
return dataset, nb_classes
def build_transform(is_train, config):
resize_im = config.DATA.IMG_SIZE > 32
if is_train:
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
input_size=config.DATA.IMG_SIZE,
is_training=True,
color_jitter=config.AUG.COLOR_JITTER if config.AUG.COLOR_JITTER > 0 else None,
auto_augment=config.AUG.AUTO_AUGMENT if config.AUG.AUTO_AUGMENT != 'none' else None,
re_prob=config.AUG.REPROB,
re_mode=config.AUG.REMODE,
re_count=config.AUG.RECOUNT,
interpolation=config.DATA.TRAIN_INTERPOLATION,
)
if not resize_im:
# replace RandomResizedCropAndInterpolation with
# RandomCrop
transform.transforms[0] = transforms.RandomCrop(config.DATA.IMG_SIZE, padding=4)
return transform
t = []
if resize_im:
if config.TEST.CROP:
size = int((256 / 224) * config.DATA.IMG_SIZE)
t.append(
transforms.Resize(size, interpolation=str_to_interp_mode(config.DATA.INTERPOLATION)),
# to maintain same ratio w.r.t. 224 images
)
t.append(transforms.CenterCrop(config.DATA.IMG_SIZE))
else:
t.append(
transforms.Resize((config.DATA.IMG_SIZE, config.DATA.IMG_SIZE),
interpolation=str_to_interp_mode(config.DATA.INTERPOLATION))
)
t.append(transforms.ToTensor())
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
return transforms.Compose(t)