import streamlit as st
import pandas as pd
import json
from typing import List, Dict
import os
from dotenv import load_dotenv
import plotly.express as px
import plotly.graph_objects as go
from anthropic import Anthropic
import time
# Import our modules
from src.invoice_generator import InvoiceGenerator
from src.vector_store import ContractVectorStore
# Load environment variables
load_dotenv()
# Page configuration
st.set_page_config(
page_title="Enterprise Pricing Audit Assistant",
page_icon="💰",
layout="wide"
)
# Load custom CSS
def load_css():
with open("styles.css") as f:
st.markdown(f"", unsafe_allow_html=True)
# Initialize LLM client
@st.cache_resource
def init_llm():
return Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
# Initialize the sentence transformer model
@st.cache_resource
def load_embedding_model():
from sentence_transformers import SentenceTransformer
return SentenceTransformer('all-MiniLM-L6-v2')
def analyze_invoice_with_rag(invoice: Dict, contract: Dict, vector_store: ContractVectorStore) -> Dict:
base_rate = contract["terms"]["base_rate"]
quantity = invoice["quantity"]
charged_amount = invoice["amount_charged"]
correct_amount = invoice["correct_amount"]
# Search for relevant contract terms
relevant_terms = vector_store.search_relevant_terms(
f"pricing rules for quantity {quantity} and amount {charged_amount}"
)
# Prepare context for LLM
context = {
"invoice_details": {
"invoice_id": invoice["invoice_id"],
"quantity": quantity,
"charged_amount": charged_amount,
"correct_amount": correct_amount,
"date": invoice["date"]
},
"relevant_terms": [term["text"] for term in relevant_terms],
"discrepancy": round(charged_amount - correct_amount, 2),
"discrepancy_percentage": round((charged_amount - correct_amount) / correct_amount * 100, 2)
}
# Generate explanation using LLM if there's a discrepancy
if abs(context["discrepancy"]) > 0.01:
prompt = f"""
Analyze this invoice for pricing accuracy:
Invoice Details:
- Invoice ID: {context['invoice_details']['invoice_id']}
- Quantity: {context['invoice_details']['quantity']}
- Charged Amount: ${context['invoice_details']['charged_amount']:.2f}
- Correct Amount: ${context['invoice_details']['correct_amount']:.2f}
- Date: {context['invoice_details']['date']}
Relevant Contract Terms:
{chr(10).join('- ' + term for term in context['relevant_terms'])}
Discrepancy found:
- Amount Difference: ${context['discrepancy']:.2f}
- Percentage Difference: {context['discrepancy_percentage']:.2f}%
Please provide a detailed explanation of:
1. Why there is a pricing discrepancy
2. Which contract terms were violated
3. How the correct price should have been calculated
Keep the explanation clear and concise, focusing on the specific pricing rules that were not properly applied.
"""
anthropic = init_llm()
response = anthropic.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role": "user", "content": prompt}]
)
explanation = response.content[0].text
else:
explanation = "Invoice pricing is correct according to contract terms."
return {
**context,
"explanation": explanation,
"relevant_terms": relevant_terms
}
def display_metrics(invoices_df):
with st.container():
st.markdown('
', unsafe_allow_html=True)
col1, col2, col3, col4 = st.columns(4)
total_invoices = len(invoices_df)
incorrect_invoices = len(invoices_df[invoices_df['has_error']])
total_value = invoices_df['amount_charged'].sum()
total_discrepancy = (invoices_df['amount_charged'] - invoices_df['correct_amount']).sum()
with col1:
st.metric("Total Invoices", total_invoices)
with col2:
st.metric("Incorrect Invoices", incorrect_invoices)
with col3:
st.metric("Total Invoice Value", f"${total_value:,.2f}")
with col4:
st.metric("Total Pricing Discrepancy", f"${total_discrepancy:,.2f}")
st.markdown('
', unsafe_allow_html=True)
def display_invoice_tables(invoices_df):
st.markdown('', unsafe_allow_html=True)
# Separate correct and incorrect invoices
correct_invoices = invoices_df[~invoices_df['has_error']].copy()
incorrect_invoices = invoices_df[invoices_df['has_error']].copy()
# Format currency columns
currency_cols = ['amount_charged', 'correct_amount']
for df in [correct_invoices, incorrect_invoices]:
for col in currency_cols:
df[col] = df[col].apply(lambda x: f"${x:,.2f}")
# Display tables in tabs
tab1, tab2 = st.tabs(["🟢 Correct Invoices", "🔴 Incorrect Invoices"])
with tab1:
if not correct_invoices.empty:
st.dataframe(
correct_invoices,
column_config={
"invoice_id": "Invoice ID",
"date": "Date",
"quantity": "Quantity",
"amount_charged": "Amount",
},
hide_index=True
)
else:
st.info("No correctly priced invoices found.")
with tab2:
if not incorrect_invoices.empty:
st.dataframe(
incorrect_invoices,
column_config={
"invoice_id": "Invoice ID",
"date": "Date",
"quantity": "Quantity",
"amount_charged": "Charged Amount",
"correct_amount": "Correct Amount"
},
hide_index=True
)
else:
st.info("No pricing discrepancies found.")
st.markdown('
', unsafe_allow_html=True)
def display_contract_details(contract):
st.markdown('', unsafe_allow_html=True)
st.subheader("📄 Contract Details")
# Basic contract information
col1, col2, col3 = st.columns(3)
with col1:
st.write("**Contract ID:**", contract['contract_id'])
with col2:
st.write("**Client:**", contract['client'])
with col3:
st.write("**Base Rate:**", f"${contract['terms']['base_rate']}")
# Pricing rules
with st.expander("🏷️ Pricing Rules"):
if "volume_discounts" in contract["terms"]:
st.write("**Volume Discounts:**")
for discount in contract["terms"]["volume_discounts"]:
st.write(f"• {discount['discount']*100}% off for quantities ≥ {discount['threshold']:,}")
if "tiered_pricing" in contract["terms"]:
st.write("**Tiered Pricing:**")
for tier in contract["terms"]["tiered_pricing"]:
st.write(f"• {tier['tier']}: {tier['rate']}x base rate")
# Special conditions
with st.expander("📋 Special Conditions"):
for condition in contract["terms"]["special_conditions"]:
st.write(f"• {condition}")
st.markdown('
', unsafe_allow_html=True)
def initialize_data():
"""Initialize data and models"""
try:
# Initialize embedding model
embedding_model = load_embedding_model()
# Initialize invoice generator
generator = InvoiceGenerator(data_dir="data")
# Ensure we have both contracts and invoices
if not os.path.exists("data/contracts.json") or not os.path.exists("data/invoices.json"):
generator.generate_and_save()
# Load contracts and invoices
contracts = generator.load_contracts()
invoices = generator.load_or_generate_invoices()
if not contracts or not invoices:
st.error("No data found. Generating new data...")
generator.generate_and_save()
contracts = generator.load_contracts()
invoices = generator.load_or_generate_invoices()
# Initialize vector store
vector_store = ContractVectorStore(embedding_model)
for contract in contracts:
vector_store.add_contract_terms(contract)
return contracts, invoices, vector_store
except Exception as e:
st.error(f"Error initializing data: {str(e)}")
st.stop()
def main():
# Load custom CSS
try:
load_css()
except Exception as e:
st.warning(f"Could not load custom CSS: {str(e)}")
st.title("🔍 Enterprise Pricing Audit Assistant")
try:
# Initialize data and models
with st.spinner('Loading data and initializing models...'):
contracts, invoices, vector_store = initialize_data()
# Convert invoices to DataFrame
invoices_df = pd.DataFrame(invoices)
# Display metrics
display_metrics(invoices_df)
# Display contract selection
selected_contract_id = st.selectbox(
"Select Contract",
options=[c["contract_id"] for c in contracts],
format_func=lambda x: f"{x} - {next(c['client'] for c in contracts if c['contract_id'] == x)}"
)
# Get selected contract
selected_contract = next(c for c in contracts if c["contract_id"] == selected_contract_id)
# Display contract details
display_contract_details(selected_contract)
# Filter invoices for selected contract
contract_invoices_df = invoices_df[invoices_df['contract_id'] == selected_contract_id]
# Display invoice analysis
st.subheader("📊 Invoice Analysis")
# Create tabs for different views
tab1, tab2, tab3 = st.tabs(["📈 Overview", "📑 Invoice Details", "🔍 Detailed Analysis"])
with tab1:
# Display summary metrics for the selected contract
total_contract_value = contract_invoices_df['amount_charged'].sum()
total_contract_discrepancy = (
contract_invoices_df['amount_charged'] - contract_invoices_df['correct_amount']
).sum()
error_rate = (
len(contract_invoices_df[contract_invoices_df['has_error']]) /
len(contract_invoices_df) * 100
)
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Contract Value", f"${total_contract_value:,.2f}")
with col2:
st.metric("Total Discrepancy", f"${total_contract_discrepancy:,.2f}")
with col3:
st.metric("Error Rate", f"{error_rate:.1f}%")
# Create visualization
if not contract_invoices_df.empty:
# Prepare data for visualization
contract_invoices_df['error_amount'] = (
contract_invoices_df['amount_charged'] -
contract_invoices_df['correct_amount']
)
# Create scatter plot
fig = go.Figure()
# Add points for correct invoices
correct_invoices = contract_invoices_df[~contract_invoices_df['has_error']]
if not correct_invoices.empty:
fig.add_trace(go.Scatter(
x=correct_invoices['date'],
y=correct_invoices['amount_charged'],
mode='markers',
name='Correct Invoices',
marker=dict(color='green', size=10),
))
# Add points for incorrect invoices
incorrect_invoices = contract_invoices_df[contract_invoices_df['has_error']]
if not incorrect_invoices.empty:
fig.add_trace(go.Scatter(
x=incorrect_invoices['date'],
y=incorrect_invoices['amount_charged'],
mode='markers',
name='Incorrect Invoices',
marker=dict(color='red', size=10),
))
fig.update_layout(
title='Invoice Amounts Over Time',
xaxis_title='Date',
yaxis_title='Amount ($)',
hovermode='closest'
)
st.plotly_chart(fig, use_container_width=True)
with tab2:
# Display invoice tables
display_invoice_tables(contract_invoices_df)
with tab3:
# Detailed analysis of incorrect invoices
incorrect_invoices = contract_invoices_df[contract_invoices_df['has_error']]
if not incorrect_invoices.empty:
for _, invoice in incorrect_invoices.iterrows():
with st.expander(f"Invoice {invoice['invoice_id']} Analysis"):
analysis = analyze_invoice_with_rag(
invoice.to_dict(),
selected_contract,
vector_store
)
# Display analysis results
st.write("**Discrepancy Amount:**",
f"${analysis['discrepancy']:.2f} "
f"({analysis['discrepancy_percentage']}%)")
st.write("**Relevant Contract Terms:**")
for term in analysis['relevant_terms']:
st.write(f"• {term['text']}")
st.write("**Analysis:**")
st.write(analysis['explanation'])
else:
st.info("No pricing discrepancies found for this contract.")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
st.stop()
if __name__ == "__main__":
main()